$$
\begin{aligned}
& \frac{V_{2}^{2}}{2}\left(1-\left(\frac{D_{2}}{D_{1}}\right)^{4}\right)=\frac{p_{1}-p_{2}}{k^{k} n \|_{s}} \rho \sqrt{\frac{2\left(\frac{p_{1}}{\rho}-p_{2}\right)}{\frac{\rho}{1-\left(\frac{D_{2}}{D_{1}}\right)^{4}}}} \\
& \rho=\frac{\gamma}{g}=\frac{9100 \mathrm{~N} / \mathrm{m}^{3}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}=927.6 \mathrm{~kg} / \mathrm{m}^{3} \quad 0.1 \\
& V_{2}=\sqrt{\frac{\frac{2(735-550) \times 10^{3}}{927 .\left(\mathrm{kg} / \mathrm{m}^{3}\right)}}{\left(1-\left(\frac{19}{31}\right)^{4}\right)}}=\sqrt{464 \mathrm{~m}^{2} / \mathrm{s}^{2}}=21.6 \mathrm{~m} / \mathrm{s} \\
& Q=V_{2} A_{2}=21.6 \mathrm{~m} / \mathrm{s} \frac{\left.(\pi 10.019 \mathrm{~m})^{2}\right)}{4}=0.00611 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
Q=\underbrace{6.11 \mathrm{l}} \mathrm{l} / \mathrm{s} \quad \mathrm{ANS} / \quad \frac{\text { IDEAL }}{C_{d}=f\left(R_{c}\right.} \quad \begin{aligned}
& \text { DISCHARGE } \\
& \text { COEFFICIENT } \\
& C_{d}<1
\end{aligned}
$$

