

Bernoulli Equation

$$
\frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{2}+z_{1}=\frac{p_{2}}{\rho}+\frac{y_{2}}{2}+\not p_{2}
$$

Example
A Pilot Tube is connected to a manometer to measure the air velocity in a wind tunnel. If the specific gravity of th
manometer fluid is $\mathrm{SG}=0.85$, what is the air speed?

$$
Z_{1}=Z_{2} \quad V_{2}=0 \quad \text { STAGNATION }
$$

$$
V_{1}=\sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho \rightleftarrows}} A \mathbb{R}
$$

$$
\rho=\frac{P}{R T}=\frac{98 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{287 \frac{x-\mathrm{m}}{\mathrm{kgk}}(25+273) \mathrm{k}}=1.146 \mathrm{~kg}_{\mathrm{m}^{3}} \quad \quad p_{2}-p_{1}=\gamma_{m} \mathrm{~h}
$$

$p_{2}-p_{1}$ FROM MANOMETER

$$
\begin{aligned}
p_{2}-p_{1}=\gamma_{m} h=S G \gamma_{W} h & =0.85\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)(0.020 \mathrm{~m}) \\
& =166.4 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{kg} / \mathrm{vk} / \mathrm{s}^{2}
\end{aligned} \quad \begin{aligned}
V_{1}=\sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho}}=\sqrt{\frac{2\left(166.4 \mathrm{~N} / \mathrm{m}_{2}^{0}\right)}{1.146 \mathrm{~kg} / \mathrm{m}^{\beta_{2}}}}=\frac{17.0 \mathrm{~m} / \mathrm{s}}{\mathrm{ANS} /}
\end{aligned}
$$

