MEC516/BME516: Fluid Mechanics I

Final Exam Question

Navier-Stokes Equation Solution

Toronto Metropolitan University

Department of Mechanical & Industrial Engineering

Final Exam 2022: Navier-Stokes Equation Solution

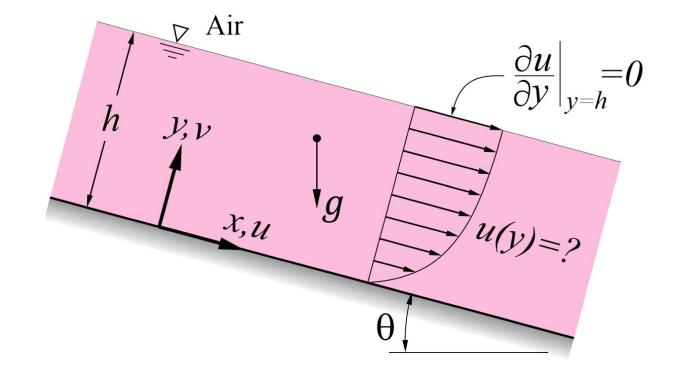
A film of viscous liquid flows down a plate inclined at angle θ . The gravity-driven flow is steady, twodimensional, incompressible and laminar. Far from the upper edge of the plate the film thickness (*h*) will be constant, and the *y*-component of fluid velocity is zero (v = 0). There is no pressure gradient in the *x*-direction ($\partial p/\partial x=0$). The shear stress caused by the air at y = h is negligible. Thus, the upper boundary condition is:

$$\left. \frac{\partial u}{\partial y} \right|_{y=h} = 0$$

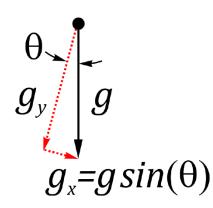
Derive expressions for the:

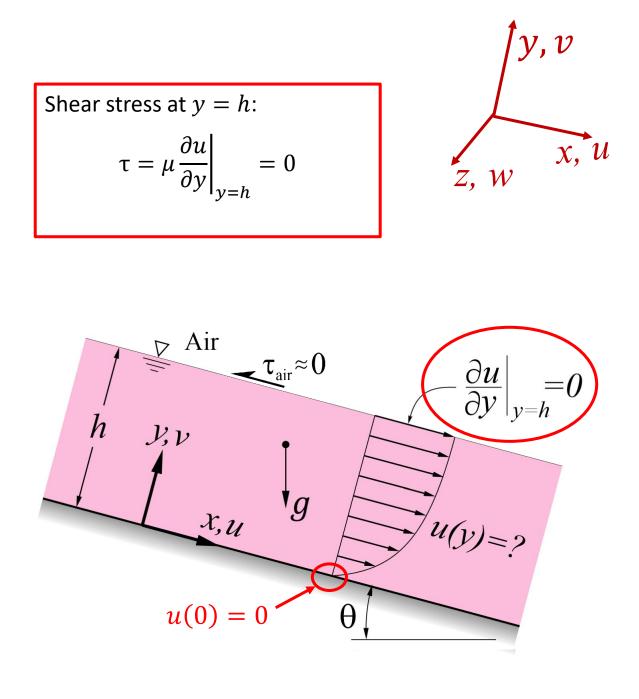
(*a*) *x*-component of liquid velocity, *u*(*y*)

(b) Pressure gradient in the y-direction,
$$\frac{dp}{dy}$$



- From problem statement:
 - Two-dimensional: w = 0
 - No flow in the *y*-direction: v = 0
 - Gravity driven flow: $g_{\chi} = g \sin(\theta)$
 - No press. gradient parallel to plate: $\frac{\partial p}{\partial x} = 0$
 - Boundary conditions:
 - No-slip at y = 0
 - No shear stress (τ) at y = h

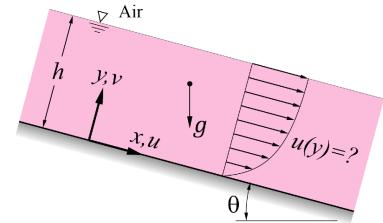




٠

(a) Start from continuity equation, incompressible flow ($\rho = const$):

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
 Thus: $\frac{\partial u}{\partial x} = 0$ Fully developed flow, $u = u(y)$
 $v = 0$ $w = 0$ (2D)



Not zero! Now consider *x*-momentum: $g_x = g \sin(\theta)$ $(\partial^2 u)$ $\partial^2 u$ $_{A} + \rho g_{x}$ ди ρ $g_y/$ 0 (2D) w = 0 0 (2D) Steady Fully Dev. Fully Dev. $g_x = gsin(\theta)$ Full derivative: u = u(y) only • Simplifying: $\rho gsin(\theta)$ = constant

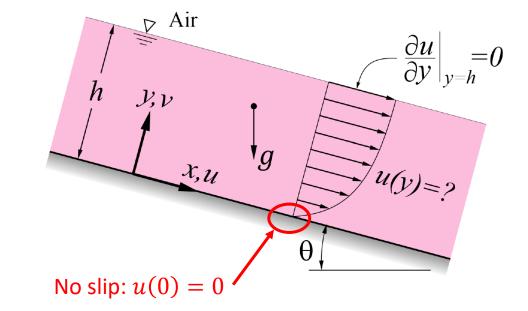
• Result:

$$\frac{d^2u}{dy^2} = -\frac{\rho g sin(\theta)}{\mu}$$

• Integrating with respect to *y*:

$$\frac{du}{dy} = -\frac{\rho g sin(\theta)}{\mu} y + C_1$$

- Integrating again:
- $u = -\frac{\rho g sin(\theta)}{2\mu} y^2 + C_1 y + C_2 \quad (*)$



- Constants $C_1 \& C_2$ from velocity boundary conditions at y = 0, h
- No slip: Substitute u = 0 at y = 0 into equation (*):

$$u = -\frac{\rho g sin(\theta)}{2\mu} y^{2} + C_{1} y + C_{2}$$

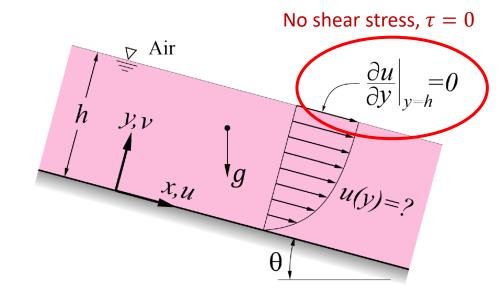
• Thus: $C_2 = 0$

- Equation (*) becomes: $u = -\frac{\rho g sin(\theta)}{2\mu}y^2 + C_1 y$
- Use zero shear stress boundary condition at y = h to get C_1
- After the 1st integration we had:

$$\frac{du}{dy} = -\frac{\rho g sin(\theta)}{\mu} y + C_1$$

• Set
$$\frac{du}{dy} = 0$$
 at $y = h$: $\frac{du}{dy} = -\frac{\rho g sin(\theta)}{\mu} y + C_1$

• Thus:
$$0 = -\frac{\rho g sin(\theta)}{\mu}h + C_1 \rightarrow C_1 = \frac{\rho g sin(\theta)}{\mu}h$$



• We now have:

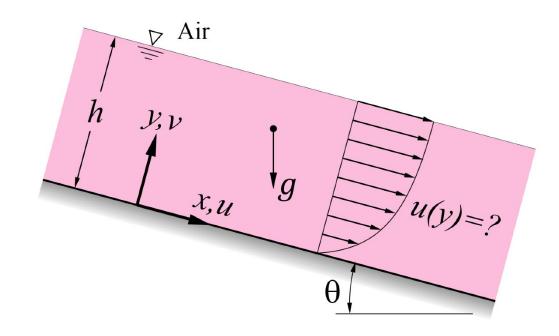
$$C_{1} = \frac{\rho g sin(\theta)}{\mu} h$$
$$u = -\frac{\rho g sin(\theta)}{2\mu} y^{2} + C_{1} y$$

• Sub. into Eq. (*):

• Result:
$$u = -\frac{\rho g sin(\theta)}{2\mu} y^2 + \frac{\rho g sin(\theta)}{\mu} h y$$

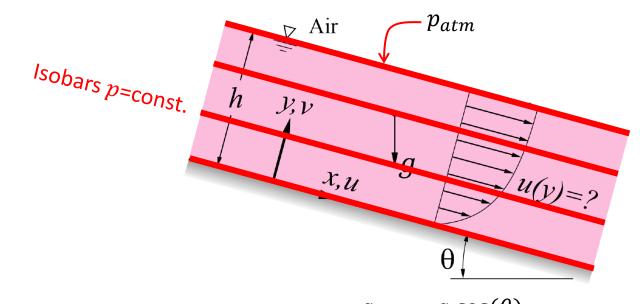
• Rearranging and collecting terms:

$$u = \frac{\rho g sin(\theta) h^2}{\mu} \left(\frac{y}{h} - \frac{1}{2} \left(\frac{y}{h} \right)^2 \right)$$
 Answer (a)



(b) The pressure gradient in the *y*-direction, $\frac{\partial p}{\partial y} = ?$

y-momentum equation:



$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho g_y$$

$$y = 0$$

$$v = 0$$

$$v = 0$$

$$v = 0$$

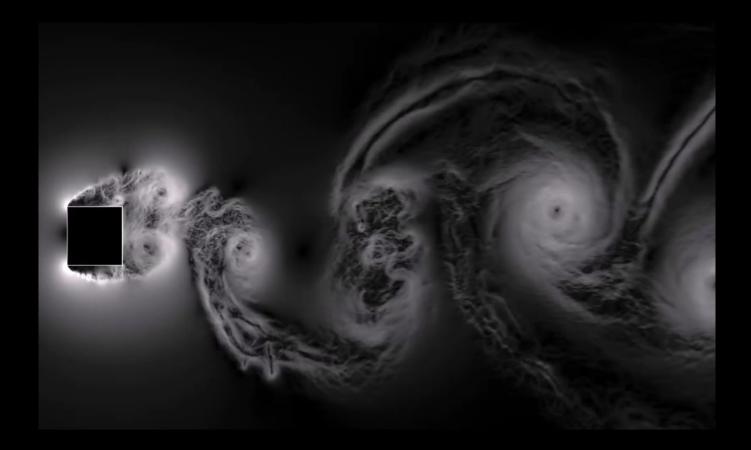
$$v = 0$$

$$g_y = -g \cos(\theta)$$

Hydrostatic pressure gradient in y-direction

Direct Numerical Simulation (DNS) of the Navier-Stokes Equations. Turbulent flow over a square cylinder: Re=20,000, 324 million grid points. Visualization shows magnitude of the pressure gradient.

Credit: F. Xavier Trias https://youtu.be/c8zKWaxohng



END NOTES

- All the videos (and pdf downloads) for this course available at: www.drdavidnaylor.net
- Presentation prepared and delivered by Professor David Naylor, 2023

Toronto Metropolitan University