Ryerson University
 Department of Mechanical \& Industrial Engineering

Midterm Exam
 MEC516 Fluid Mechanics I

Date: Friday, October, 16, 2015 Time: 4:10-6:00 pm (1 hour, 50 minutes)
Examiner: Dr. D. Naylor

INSTRUCTIONS

1. This is a CLOSED BOOK TEST. Materials allowed are limited to: pen, pencil, ruler, and a calculator. A personal equation sheet is NOT allowed.
2. Some helpful equations can be found on the last page of this exam paper.
3. Calculators must be non-communicating and must not be capable of storing formulae.
4. Cell phones, PDAs, etc. are NOT allowed. Possession of a communication device will trigger charges of academic misconduct.
5. Students are responsible for keeping track of the time. It is strongly recommended to bring a regular watch to the exam.
6. Answer all questions. The mark values are shown below.
7. A valid student identification card must be presented when attendance is taken.
8. In order to get maximum part marks use the symbols given in the problem statement. Also, be sure to give the proper units on intermediate results.
9. Missing units on final answers will be penalized.

Student Name (PRINT PLEASE!):

Student Number: SCHEME.

Section: \qquad

Question	Mark
A1-A4	$/ 12$
B1	$/ 10$
B2	18
B3	$/ 10$
Total	140

PART A - MULTIPLE CHOICE QUESTIONS

Each of the questions below is followed by several suggested answers. $O_{\text {II }}$ Ite eran
that is best. There is no penalty for incorrect answers.
Questions $\Lambda \mathrm{I}$ to $\Lambda 4$ are worth $\mathbf{3}$ marks each.

A1. In this course, we will be assuming that fluids are "Newtonian". A fluid is considered to be
Newtonian if:
Newtonian if:
(a) The fluid ubeys Newton's first and second laws.
(b) The viscosity is not a function of temperature
(c) The fluid cannot resist shear stress
(d) The viscosity is a function of the no matter how small.
(e) The local fluid shear stress is line velocity gradient but constant over time.

A2. Consider the inclined piezometer attached to a pipe as shown in the sketch below. The pipe is filled with water $\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The inclined length of the water column is $\mathrm{L}=125 \mathrm{~cm}$ and the angle is $\theta=40$ degrees.
The gauge pressure in the pipe at point A is:
(a) 9.37 kPa
(c) 12.2 kPa
(d) 6.29 kPa
(e) 6.12 kPa

A3. An aluminum part with a volume of $0.12 \mathrm{~m}^{3}$ with a specific gravity of S.G. $=2.8$ rests on the bottom of an oil tank. The part is fully submerged in oil with specific gravity S.G. $=0.85$. What is the magnitude of the force exerted by the part on the bottom of the tank?
(a) 0.23 kN
(b) 0.33 kN
(c) 2.1 kN
(d) 2.3 kN
(e) 3.3 kN
$F=W-F_{b}=.12 \mathrm{~m}^{3} 2.8\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)-0.12(.85) 9790=2.3 \mathrm{kN}$
A4. A block of wood (S.G. $=0.6$) floats on the surface of oil with 75 percent of its volume below the water line i.e., 75% submerged. What is the specific gravity (S.G.) the oil?
(a) 0.75
(b) 0.80
(c) 0.85
(d) 0.95
(e) 1.05

$$
\begin{aligned}
& W=F_{B} \\
& \forall_{\text {waod }} \gamma_{\text {woad }}=0.75 H_{\text {wood }} \gamma_{\text {oIL }} \\
& \gamma_{\text {oIL }}=\frac{\gamma_{\text {wood }}}{0.75} \underbrace{}_{G}=\frac{S G_{\text {wood }}}{0.75}=\frac{0.6}{.75}=0.80 \\
& \div \gamma_{\text {wath }}
\end{aligned}
$$

B1．Consider flow at a mean velocity V in a round pipe with an inside diameter D and length L ．The fluid

$$
\frac{d p}{d x}=\frac{-K \mu V}{D^{2}}
$$

Using the four primary dimensions $\mathrm{M}, \mathrm{L}, \mathrm{T}$ and θ ：
（a）Derive or state the dimension
（b）Determine the dimensions of of each variable（ p, x, D, V, μ ）．（4 marks）
（a）
（b）

$$
\begin{equation*}
\{P\}=\left\{\frac{F}{A}\right\}=\left\{\frac{M L / T^{2}}{L^{2}}\right\}=\left\{\frac{M}{T^{2} L}\right\} \tag{2}
\end{equation*}
$$

$$
\{x\}=\{L\} \quad\{D\}=\{L\} \quad\{V\}=\{L / T\}
$$

$\{\mu\}=\left\{\frac{\tau}{d u / d y}\right\}=\left\{\frac{F / A}{d u / d y}\right\}=\frac{\left\{\frac{M L}{T^{x} L^{2}}\right\}}{\left\{\frac{K}{X}, L\right\}}=\left\{\frac{M}{T L}\right\}$

$$
K=-\frac{d p}{d x} \frac{D^{2}}{\mu V} \quad\{K\}=\left\{\frac{d p}{d x}\right\} \frac{\left\{D^{2}\right\}}{\left.\{\mu\} \frac{1}{2} v\right\}}
$$

$$
\{K\}=\left\{\frac{M K}{T^{2} L^{2}}\right\} \frac{\left\{K^{2}\right\}}{\left\{\frac{M^{K}}{K T}\right\}\left\{\frac{K}{T}\right\}}=\{-\} \quad \begin{array}{ll}
\text { dIMENSIONLESS }
\end{array}
$$

（NOTE：DIMENSIONS DON＇T HAVE A SIGN．
THIS WAS A COMMON ERROR）

2．A mercury manometer is connected from Tank A to Tank B as shown in the sketch below．A Bourdon pressure gauge on tank A indicates that the pressure in the air is 120 kl a．Tank A contains oil（ $\mathrm{SG}_{\mathrm{S}_{0}}=0.9$ ） and Tank B contains water（ $p=998 \mathrm{~kg} / \mathrm{m}^{3}$ ）．The local atmospheric pressure is 98 kPa ．
（a）Calculate the reading on the Bourdon pressure gage in Tank B for the manometer configuration shown below．
（b）The temperature in Tank A is 20°（．Calculate the density of the air in Tank A ．The gas constant for air is R $287 \mathrm{~J} / \mathrm{kgK}$ ．

$$
\begin{aligned}
& \gamma_{0}=S G_{0} \gamma_{W}=8811 \mathrm{~N} / \mathrm{m}^{3} \\
& \gamma_{W}=9790 \mathrm{~N} / \mathrm{m}^{3} \\
& \gamma_{m}=S G_{m} \gamma_{W}=133144 \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

（a）$P_{A}+\gamma_{0} h_{1}-\gamma_{m} h_{2}-\gamma_{w} h_{3}=P_{B}$

$$
P_{B}=120 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+8811 \mathrm{~N} / \mathrm{m}^{3}(6 \mathrm{~m})-133144 \frac{\mathrm{~N} / \mathrm{m}^{3}}{}(1 \mathrm{~m})
$$

$-9790 \mathrm{~N} / \mathrm{m}^{3}(9 \mathrm{~m})=-48388 \mathrm{~N} / \mathrm{m}^{2}=-48.4 \mathrm{kPa}$ ANS
（b）$\quad P=\frac{P_{A}}{R T} \quad P_{A}=120+98=218 \mathrm{kPa}$（a）

$$
\rho=\frac{218 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{287 \frac{\mathrm{k}-\mathrm{m}}{\mathrm{kgK}}(20+273) \mathrm{K}}=2.59 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

B3. A semi-circular gate with radius $\mathrm{R}=5.4 \mathrm{~m}$ is hinged along the edge at point A . The water has a density of $998 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the required force (P^{2}) applied at point B to hold the gate stationary. ($\mathbf{1 0}$ marks)

$$
\begin{aligned}
& A=\pi R^{2} / 2 \\
& F_{h}=\gamma_{w} h_{C G} A \\
& h_{C G}=4.1 m+\frac{4 R}{3 \pi} \\
& =4.1 \mathrm{~m}+2.292 \mathrm{~m}=6.392 \mathrm{~m} \\
& \text { water } \\
& =\pi(5.4)^{2}=45.80 \mathrm{~m} \\
& \text { Head-on View } \\
& \text { of Gate } \\
& \mathrm{R}=5.4 \mathrm{~m} \\
& F_{h}=\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right) 6.392_{1}^{m}(45.80 \mathrm{~m})=2866 \mathrm{kN} \rightarrow \\
& y_{c p}=\frac{-I_{x x} \sin \theta}{h_{c G} A} \\
& I_{x x}=0.10976 R^{4} \\
& =0.10976(5.4)^{4}=93.33 \mathrm{~m}^{4} \\
& y_{p c}=\frac{-93.33 m^{4}\left(\sin 96^{\circ}\right)}{6.392 m(45.80) m^{2}}=-0.3188 \mathrm{~m} \\
& \text { aBD } \\
& \sum M_{A}=0 \\
& F_{h}(2.611)_{m}=P(5.4 m) \\
& P=2866 \mathrm{kN} \frac{(2.611)}{5.4}=1390 \mathrm{kN}
\end{aligned}
$$

Ideal gas equation of state:

$$
p=\rho R T
$$

Hydrostatic Pressure: $\quad \frac{d p}{d z}=-\gamma$
Fluid shear stress: $\quad \tau=\frac{F}{A}=\mu \frac{d u}{d y}$
Hydrostatic forces on plane surfaces:

$$
F=\gamma h_{C G} A \quad y_{C P}=-\frac{I_{x x} \sin \theta}{h_{C G} A} \quad x_{C P}=-\frac{I_{x y} \sin \theta}{h_{C G} A}
$$

Buoyancy force:

$$
F_{B}=\gamma \forall_{\text {displaced }}
$$

