MEC516/BME516: Fluid Mechanics 1

Review: Final Exam Question

General Energy Equation Example

Example: General Energy Equation Problem

Final Exam 2018

A pump-turbine system shown in the figure draws water from the upper reservoir in the daytime to produce power for a city. At night, it pumps water from lower reservoir to restore the situation. For a design flow rate of $120 \mathrm{~m}^{3} / \mathrm{min}$ in either direction, the total frictional head loss is 15 m . Assume that the turbine and pump both have an efficiency of 75%. Estimate:
a) The electrical power output by the turbine in kW .
b) The electrical power required by the pump in kW .

Solution

(a) Daytime: Flow is from 1 to 2; Energy is extracted by the turbine

- General Energy Equation (All terms in energy per unit weight, $\frac{J}{N}=\frac{N m}{N}=m$)

Total fluid energy per unit weight at point (2)

- Solve for the head of the turbine, $h_{T u r b}$
- $h_{\text {Turb }}=z_{1}-z_{2}-h_{\text {loss }}=150 m-25 m-15 m=110 m$ (Energy extracted per unit weight from the fluid)

Solution

- Energy per unit weight extracted from the fluid: $h_{\text {Turb }}=110 \mathrm{~m}$
- The power output from the turbine is:

$$
P_{\text {Turb }}=\eta \gamma h_{\text {Turb }} Q
$$

(Only 75\% of the fluid power gets converted into useful power by the turbine)

- Volume flow rate $Q=120 \frac{\mathrm{~m}^{3}}{\min } \frac{\mathrm{~min}}{60 \mathrm{~s}}=2.0 \mathrm{~m}^{3} / \mathrm{s}$
- Specific weight of water: $\gamma=\rho g=998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}$

$$
P_{\text {Turb }}=\eta \gamma h_{\text {Turb }} Q=0.75\left(9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(110 \mathrm{~m}) 2.0 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=1615,300 \mathrm{~W}=1620 \mathrm{~kW}
$$

Solution

(b) Night: Flow is from 2 to 1; Energy added by the pump

- General Energy Equation (All terms in energy per unit weight, $\frac{J}{N}=\frac{N m}{N}=m$)

- Solve for the head of the pump, $h_{\text {Pump }}$
- $h_{\text {Pump }}=z_{1}-z_{2}+h_{\text {loss }}=150 m-25 m+15 m=140 m$ (Energy added per unit weight to the fluid)

Solution

- Energy per unit weight added to the fluid: $\quad h_{\text {Pump }}=140 \mathrm{~m}$
- The power input to the pump shaft is:

$$
P_{\text {Pump }}=\frac{\gamma h_{\text {Pump }} Q}{\eta}
$$

(Pump is 75\% efficient at adding power to the fluid. Pump requires MORE power input the energy added to the fluid.)

$$
P_{\text {Turb }}=\frac{\gamma h_{\text {Pump }} Q}{\eta}=\frac{\left(9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(140 \mathrm{~m}) 2.0 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{0.75}=3655000 \mathrm{~W}=3655 \mathrm{~kW}
$$

Ans.

