ERRATA IN "INTRODUCTION TO CONVECTIVE HEAT TRANSFER ANALYSIS"

Page 3 - In Fig. 1.4, equation should be

$$
q_{w}=\left.k \frac{\partial T}{\partial y}\right|_{n=0}
$$

Page 23-4th line above Fig. 1.19 should read:" i.e., equal $\dot{m} V$, i.e., equal to $\rho V d A V$, \qquad

Page 24 - Equation near the top of the page should be:

$$
R e=\ldots .=\frac{\rho U^{2}}{\mu U \ell}
$$

Page 29 - Problem 1.10 "...... in the Appendix, draw graphs"

Page 39 - The term near the middle of Eq. (2.31) should be:

$$
+u \mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial y \partial x}\right)
$$

Page 48 - The line at the top of the page should read "so using the continuity equation, Eq.(2.75) can be written as:

Page 52 - The last term in Eq. (2.96) should be:

$$
+\nu\left(\frac{\overline{\partial^{2} \bar{u}}}{\partial x^{2}}+\ldots \ldots\right)
$$

Page 54 - The first term in the equation following Eq. (2.107) should be:

$$
\sigma_{x}=2 \mu \frac{\partial \bar{u}}{\partial x}
$$

Page 54 - The last term in Eq. (2.108) should be:

$$
+\frac{\partial}{\partial y}\left(\bar{\tau}_{x y}-\rho \overline{v^{\prime} u^{\prime}}\right) \ldots
$$

Page 63 - The last term in equation at the bottom of the page should be:

$$
\cdots\left[\frac{o(1)}{o(1)}+\frac{o(1)}{o(1)} \frac{1}{(\delta / L)^{2}}\right]
$$

Page 64 - The equation numbers in the middle paragraph are incorrect. It should read "..... dimensionless equation (2.131), the magnitude \qquad .also from Eq. (2.134)...

Page 66 - In the statement following the first two equations, it should state ... are at most of the order of $(\delta / L)^{2} \ldots$

Page 75 - In the fourth paragraph from the bottom of the page, the equation number is incorrect.
It should read ... integral equation (2.172) ...
Page 76 - In the paragraph near the middle of the page, the figure number is incorrect. It should read ...shown in Fig. (2.21) ...

Page 77 - The last line should read ... integral equation can be solved...

Page 81 - Problem 2.8. The middle line should read ... a dimensionless temperature of ...

Page 81 - Problem 2.9. The second line should read as follows: $u_{k}=w \ldots$ and $x_{k}=z$.

Page 87 - The numerator in the second term in the equation at the bottom of the page should be $f^{\prime}{ }_{\infty}-1$.

Page 104 - In the statement of Example 3.4, the third line should read ... the surface temperature of the plate is given by ...

Page 111 - The second line of text should read ... the solution given in and earlier section ...

Page 116 - The equation number given in the paragraph that begins near the middle of the page is incorrect. It should read ... integral equation (2.172) can ...

Page 126 - In the second last paragraph on the page, the second sentence should read ... to
derive the finite difference form of Eq. (3.177) attention ...
Page 128 - The line after Eq. (3.185) should end ... involving $\Delta X^{2} \ldots$

Page 130 - The equation in the first line is incorrect, it should read ... application of Eq. (3.198)

Page 141 - The last line should read η large, $f^{\prime} \rightarrow 1$

Page 142 - The second line should read ... in Fig. 3.4. This ...

Page 148 - The sentence after Eq. (3.270) should read ... shown in Section 3.2...

Page 153 - Problem 3.11. The statement...Assuming a Prandtl number of $1 \ldots$ should be removed.

Page 154 - Problem 3.18. The second sentence should read Consider the simple case shown in

Fig. P3.18. Also, the figure at the bottom of the page should be labeled P3.18.
Page 170 - Eq. (4.56) should read $\dot{m}=\rho u_{c} W \ldots$

Page 180 - The second line after the figure should read adopted, e.g. if the rate of diffusion of heat ...

Page 181 - The sentence after Eq. (4.104) should read Here, $A=B / W \ldots$

Page 184 - In Eqs. (4.114) and (4.115), T_{1} should be replaced by T_{c}.

Page 184 - The sentence following Eq. (4.118) should read Here, again, $A=B / W \ldots$

Page 187 - The second sentence after Eq. (4.133) should read ... i.e., if $G_{i, j}^{n} \ldots$
Page 205 - In the fourth term of Eq. (4.218), the numerator should be $\ldots+U_{i-1, j-1}-U_{i-1, j}$)
Page 205 - In the sixth term of Eq. (4.219), the numerator should be $\ldots+U_{i-1, j-1}-U_{i-1, j}$)
Page 207 - In the third term of Eq. (4.231), the numerator should be $\ldots+\theta_{i-1, j-1}-\theta_{i-1, j}$)

Page 207 - In the fourth term of Eq. (4.232), the numerator should be $\ldots+\theta_{i-1, j-1}-\theta_{i-1, j}$)
Page 209 - The denominator in the last part of Eq. (4.242) should be $1-4 \overline{N u_{D}} Z$

Page 216 - The second sentence after Eq. (4.273) should read ... $\theta_{i, 2}$ and $\theta_{i, N}=1$. Once these ...
Page 219 - The sentence following Eq. (4.289) should read ... into the program DUCTSYM.

Page 220 - Problem 4.1. This should read ... laminar fluid flow through ...

Page 221 - Problem 4.3, Part (f). This should read ... temperature of $250^{\circ} \mathrm{C}$ flowing ...
Page 221 - Problem 4.6. This should read ... a length of 15 m . An ...

Page 222 - Problem 4.15. This should read ... the quantity $Q / k(H+W)\left(T_{w} \ldots\right.$

Page 223 - Problem 4.15 Part (ii). This should read ... the quantity $Q / k(H+W)\left(T_{w} \ldots\right.$

Page 223 - Problem 4.18. The third line should read ... length of $1 \mathrm{~m} .$.

Page 223 - Problem 4.21. This should read ... enters a $2.5-\mathrm{cm}$ diameter...

Page 223 - Problem 4.22. The third line should read ... of 1.5 mm and are kept ...

Page 229 - Equation (5.7) should be

$$
q_{m}=\ldots \ldots .=-\rho c_{p} \alpha \frac{\partial \bar{T}}{\partial y}
$$

Page 255 - Equation (6.2) should be

$$
q=\ldots \ldots=-k \frac{\partial \bar{T}}{\partial y}+\rho c_{p} \overline{v^{\prime} T^{\prime}}
$$

Page 264 - The first part of Eq. (6.33) should be:

$$
0=\frac{k}{\rho c_{p}} \frac{\partial^{2} \bar{T}}{\partial y^{2}} \quad \text { i.e. ... }
$$

Page 265- The line Eq. (6.43) should read ... this into Eq.(6.41) ...

Page 268 - Equation (6.62) should be

$$
u^{+}=5 \ln y^{+}-3.05
$$

Page 269 - The right hand side of Eq. (6.62) should be

$$
\ldots \ln \left\{1+\frac{P r}{P r_{T}}\left[\left(\frac{y^{+}}{5}\right)-1\right]\right\}
$$

Page 269 - The middle part of the second line of Eq. (6.75) should be

$$
\ldots \ln \left[\frac{1+5 \operatorname{Pr} / P r_{T}}{6}\right] \ldots
$$

Page 272 - The second term on the left hand side of Eq. (6.83) should be

$$
\left.\ldots\left(1-\frac{\bar{u}}{u_{1}}\right) d y\right] \ldots
$$

Page 277 - The middle term in Eq. (6.105) should end with

$$
\left.\ldots\left(\frac{y}{\delta}\right)^{1 / n}\right] d\left(\frac{y}{\delta}\right) \ldots
$$

Page 277 - The middle term in Eq. (6.106) should end with

$$
\left.\ldots\left(\frac{y}{\delta}\right)^{2 / n}\right] d\left(\frac{y}{\delta}\right) \ldots
$$

Page 279 - The right hand side of Eq. (6.120) should be

$$
\int_{x_{0}}^{x} \frac{d x}{x}
$$

Page 286 - In the vector on the right hand side of the matrix equation above Eq. (6.147), the second from bottom term should be L_{N-1}

Page 292 - The denominator on the right hand side of Eq. (6.174) should be $k\left(T_{w r}-T_{1}\right)$
Page 294 - The following extra term should be added to the right hand side of Eq. (6.179)

$$
\ldots+\frac{\partial}{\partial Y}\left(\frac{E_{H}}{P r_{T}} \frac{\partial \theta^{*}}{\partial Y}\right)
$$

Page 314 - The sentence following Eq. (7.40) should end ... is constant and known for a given situation.

Page 319 - In the second sentence following Eq. (7.77) and in Eq. (7.78) the symbol y_{1}^{+}should be replaced by y_{c}^{+}

Page 321 - In Example 7.2 following the line $f=0.0173$, the sentence should read Eq. (7.88) was derived for the uniform wall heat flux case. It will, however, be assumed to apply here. It gives:

Page 338 - In the sentence following the temperature profile, \bar{u}_{m} / u_{c} should be replaced by $\bar{u}_{m} / \bar{u}_{c}$

Page 357 - In the equation that follows the sentence beginning Eq. (8.59) can be integrated ..., the limits of integration are 0 to η

Page 362 - In the denominator in the first two terms of Eq. (d), the factor 2 should be removed

Page 373 - In the second line above Figure 8.19, z should be replaced by Z

Page 380 - The vertical axis in Figure 8.23 should be labeled $Q_{L} \times L$ and the caption should read Variation of $Q_{L} \times L$ with $L \ldots$
Page 384 - In the equations below Figure E8.5 and in the paragraph following these equations, replace Q_{a} with Q_{L}
Page 385 - Starting with the paragraph From the \ldots replace Q_{a} with Q_{L}

Page 387 - In Eq. (8.127b) replace w with W

Page 389 - In Eq. (8.133) replace w with W

Page 392 - The last term in the middle equation should be :

$$
R a\left[\left(\frac{\theta_{i+1, j}-\theta_{i-1, j}}{2 \Delta X}\right) \sin \phi-\ldots \cos \phi\right]
$$

Page 406 - The right hand side of the first equation should be :

$$
R a \frac{\partial \theta}{\partial Y}
$$

Page 417 - Problem 8.2 should read A $0.3-\mathrm{m}$ square vertical ...

Page 417 - Problem 8.4 should read A 0.1-m square ...

Page 417 - Problem 8.5 should read A vertical plate 30 cm high ...

Page 417 - Problem 8.6 should read ... along a 1-m high ...

Page 417 - Problem 8.8, the second sentence should read If the plates are 30 cm high ...

Page 432 - The last term in Eq. (9.21) should be:

$$
=\sqrt{\frac{u_{1}}{\nu x}}
$$

Page 433 - In Eq. (9.30) the second term on the left hand side should be deleted
Page 434 - In Eq. (9.37) the minus sign on the right hand side should be replaced by a plus sign
Page 435 - The first sentence in the last paragraph should read ... with Eqs. (9.35) and (9.38) ...
Page 439 - In Eqs. (9.48) and (9.49) the term $G_{x}^{0.25}$ should be replaced by $G_{x}^{0.5}$
Page 440 - Eq. (9.56) should read:

$$
H_{1}^{\prime \prime \prime}+\frac{3}{4} \operatorname{Pr} \ldots
$$

Page 440 - Eq. (9.57) should read:

$$
\ldots H_{1}^{\prime}(0) / G_{x}^{0.5}
$$

Page 446 - The second last line before Eq. (9.62) should read ... are Eqs. (9.5) to (9.8). If ...

Page 447 - The sentence following Eq. (9.65) should read ... force term in Eq. (9.63)...
Page 450 - In Eq. (9.70) the x following the G should be a subscript

Page 451 - In Eq. (9.74) the minus sign on the right hand side should be replaced by a plus sign
Page 452 - In the first equation on the page the minus sign should be replaced by a plus sign
Page 457 - In the second last line a ρ should be added after the g
Page 459 - In Eq. (9.89) the denominator in the second term on the right hand side should be
$2 K\left|u^{\prime}\right|$
Page 460 - In the first equation on the page, the last term should be $\rho\left|v^{\prime}\right|\left|T^{\prime}\right|$
Page 469 - In Eq. (9.116) there should be a minus sign in front of the pressure gradient on the
right hand side
Page 475 - The right hand side of Eq. (9.126) should have a plus sign inserted between the pressure gradient and the ν

Page 475 - The right hand side of Eq. (9.129) should have a plus sign inserted before the ν and the extra plus sign should be deleted

Page 491 - The sentence before Eq. (10.6) should read ... in Eq. (10.5) will ...

Page 505 - In the middle term in Eq. (10.63) the D should not be a subscript

Page 510 - The sentence following Eq. (10.90) should read ... lie outside the boundary layer, the

Page 517 - In Eq. (10.125) the commas should be deleted

Page 528 - In Eq. (10.175) the g in the denominator on the right hand side should not be a subscript
Page 549 - Problem 10.14 should read ... to deal with non-vertical enclosures ...

Page 561 - The sentence following Eq. (11.9) should read ... its latent heat $h_{f g}$ must be ...
Page 563 - The minus sign on the left hand side of the first equation on the page should be deleted

Page 563 - The sentence following Eq. (11.19) should read ... transfer rate to a wall ...

Page 573 - The specific heat is $4217 \mathrm{~J} / \mathrm{kg} \mathrm{K}$

Page 578 - The first sentence should read So, integrating Eq. (11.49) ...

Page 579 - In the equation in the center of the page, m should be replaced by \dot{m}
Page 585 - In the third and fifth equations on this page, the term $R e^{*} 2$ should be replaced with $R e^{* 2}$
Page 586-594-Replace $T_{\text {sat }}$ with T_{s}
Page 590 - In Eq. (11.98) replace $h f g$ by $h_{f g}$
Page 590 - In the last equation on this page, replace ν by ν_{ℓ} and make the upper limit on the integral in the last term η_{δ}

Page 591 - In the first equation on this page, replace ν by ν_{ℓ}
Page 593 - In Eqs. (11.118) to (11.120), replace η^{4} by ζ^{4}
Page 596 - In the last terms of the first two equations, replace the denominator 3 with 2

Page 598 - The left hand side of Eq. (11.135) should be:

$$
h_{f g}\left[\frac{\rho_{\ell}^{2} \omega^{2}}{3 \mu_{\ell}}\right] \ldots
$$

Page 601 - Problem 11.11 should state ... shown in Figure P11.10 and the figure at the bottom of the page should be numbered Figure P11.10

ADDITIONAL ERRORS

Page 114 - The temperature difference $T_{w}-T_{1}$ has been omitted from the dfinition of the Nusselt number in Example 3.5. The answer is, as a consequence, incorrect.

Page 125 - In the left hand side of Eq. (3.172), the T 's should be replaced by u 's.

