Example: Calculate the total hydrostatic force on

$$
F_{H}=\left(9800 \mathrm{~N} / \mathrm{m}^{3}\right) 3 \mathrm{~m}\left(6 \mathrm{~m}^{2}\right)=176.4 \mathrm{kN} \longrightarrow
$$

VERTICA FoRCE $\sum F_{z}=0 \quad F_{V}=F_{1}-W$

$$
F_{1}=\gamma h A_{B g}=\left(9800 \mathrm{~N} / \mathrm{m}^{3}\right) 6 \mathrm{~m}(6 \mathrm{~m} \times 1 \mathrm{~m})=352.8 \mathrm{kN} \uparrow
$$

$$
\begin{aligned}
& W=\forall \gamma=7.726 \mathrm{~m}^{2}\left(9800 \mathrm{~N} / \mathrm{m}^{3}\right)=75.71 \mathrm{kN} \frac{1}{\mathrm{\gamma}} \\
& F_{V}=F_{1}-W=352.8 \mathrm{kN}-75.71 \mathrm{kN}=277.1 \mathrm{kN}
\end{aligned}
$$

LINE OF ACTION

$$
\begin{aligned}
F & =\sqrt{F_{H}^{2}+F_{V}^{2}} \\
& =\sqrt{176.4^{2}+277.1^{2}}=328 \mathrm{kN}
\end{aligned}
$$

$$
\alpha=\tan ^{-1}\left(\frac{F_{V}}{F_{H}}\right)=57.5^{\circ} \text { ANS }
$$

