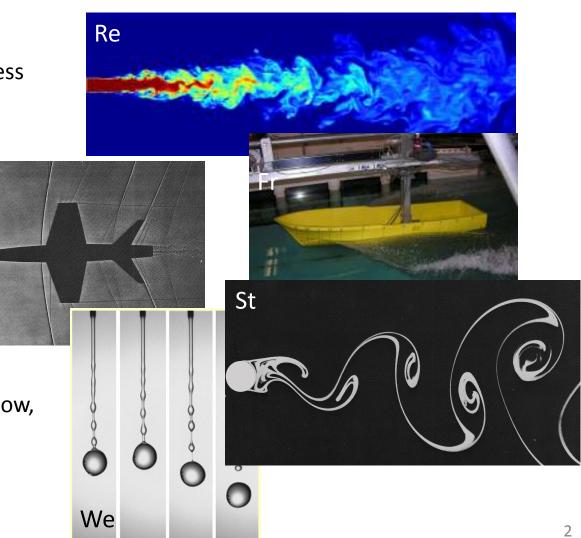
MEC516/BME516: Fluid Mechanics I

Chapter 5: Dimensional Analysis & Similarity Part 5

© David Naylor, 2014

Department of Mechanical & Industrial Engineering

© David Naylor


Overview

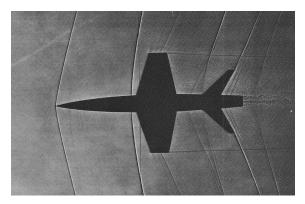
• Discussion of some common dimensionless parameters in fluid mechanics:

Ma

- Reynolds number, Re
- Mach number, Ma
- Froude number, Fr
- Weber number, We
- Strouhal number, St

 Used to characterise laminar/turbulent flow, compressible flow, open channel flow, flows with strong surface tension effects, oscillating flows.

Reynolds number

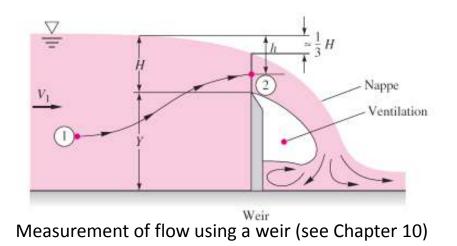

$$Re = \frac{\rho V \ell}{\mu} = \frac{inertia \ force}{viscous \ force}$$

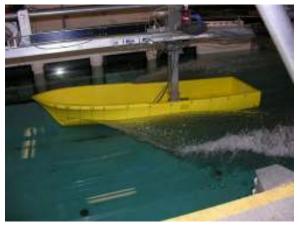
- Widely applicable in fluid dynamic problems
 - Re<<1, viscous forces dominate and forces due to acceleration are small (Stokes flow).
 - Re determines transition from laminar to turbulent flow (Lab #2)

• Mach number

$$Ma = \frac{V}{c} = \frac{flow \ speed}{speed \ of \ sound}$$

- Important in compressible flows (Ma > 0.3)
- Applications: supersonic flight, rocket ballistics.

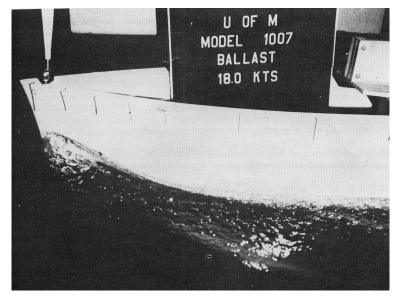



Shock waves from a model launched at Ma = 1.1Source: Album of Fluid Motion

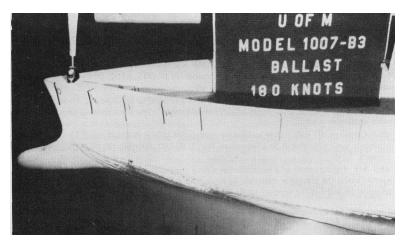
• Froude number

 $Fr = \frac{V^2}{g \,\ell} = \frac{inertia \ force}{gravity \ force}$

- Important in open channel flows, flows with a free surface.
- Applications: Weirs, modelling river flow, flood & tsunamis prediction, wave drag on hulls.



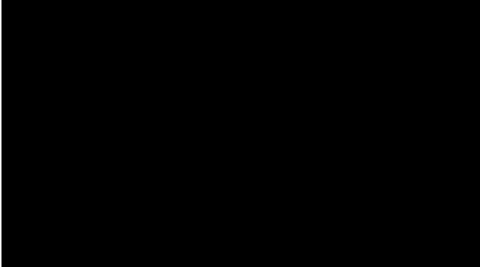
Measurement of drag on a model boat in a tow tank.


• Froude number

$$Fr = \frac{V^2}{g \,\ell} = \frac{inertia \ force}{gravity \ force}$$

Ship are towed such that they have the same Froude number as the full scale ship.

Hull without a bulbous bow.



Hull with a bulbous bow. Notice the large reduction in the wake of the bow. Can result in as much as 10-15% reduction in wave drag and ship fuel consumption. Source: Fluid Mechanics, Streeter and Wylie, 1979

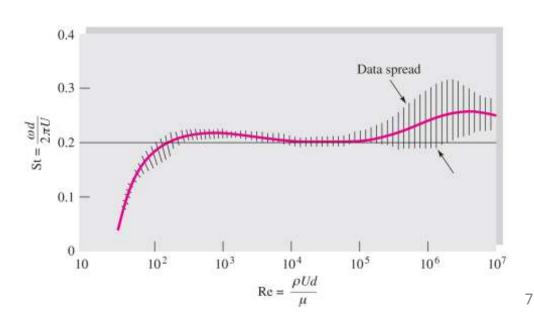
• Weber number

 $We = \frac{\rho V^2 \ell}{\Upsilon} = \frac{inertia\ force}{surface\ tension\ force}$

- Important in flows with an interface between two fluids, e.g. water and air.
- Applications: Multi-phase flows where liquid droplet and capillary effects are important e.g. spray painting, inkjet printing.

Experiments with water jets in microgravity (near zero "g") via parabolic arc flight.

Source: http://www.youtube.com/watch?v=zyfqL4sgVuc


Strouhal number

 $St = \frac{(\omega/2\pi) \ell}{V} = \frac{flow oscillation speed}{mean flow speed}$

- A dimensionless frequency, important in unsteady oscillating flows e.g. Karman vortex shedding.
- Applications: Flow induced vibration of structures and hydro wires. Avoid St values near resonance.

Vortex shedding behind a cylinder. http://www.youtube.com/watch?v=JI0M1gVNhbw

© David Naylor

Common Dimensionless Parameters in Fluid Mechanics

Table 5.2

Parameter	Definition	Qualitative ratio of effects	Importance	
Reynolds number	$\operatorname{Re} = \frac{\rho UL}{\mu}$	Inertia Viscosity	Almost always	
Mach number	$Ma = \frac{U}{a}$	Flow speed Sound speed	Compressible flow	
Froude number	$Fr = \frac{U^2}{gL}$	Inertia Gravity	Free-surface flow	
Weber number	We = $\frac{\rho U^2 L}{\Upsilon}$	Inertia Surface tension	Free-surface flow	
Rossby number	$\mathrm{Ro} = \frac{U}{\Omega_{\mathrm{earth}}L}$	Flow velocity Coriolis effect	Geophysical flows	
Cavitation number (Euler number)	$Ca = \frac{p - p_v}{\rho U^2}$	Pressure Inertia	Cavitation	
Prandtl number	$\Pr = \frac{\mu c_p}{k}$	Dissipation Conduction	Heat convection	
Eckert number	$Ec = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation	
Specific-heat ratio	$k = \frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow	
Strouhal number	$\mathrm{St} = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow	

Table 5.2 continued	Roughness ratio	$\frac{\epsilon}{L}$	Wall roughness Body length	Turbulent, rough walls
	Grashof number	$\mathrm{Gr} = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection
(This is just a partial list.)	Rayleigh number	$Ra = \frac{\beta \Delta T g L^3 \rho^2 c_p}{\mu k}$	Buoyancy Viscosity	Natural convection
	Temperature ratio	$rac{T_w}{T_0}$	Wall temperature Stream temperature	Heat transfer
	Pressure coefficient	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynamics
	Lift coefficient	$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynamics
	Drag coefficient	$C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$	Drag force Dynamic force	Aerodynamics, hydrodynamics
	Friction factor	$f = \frac{h_f}{(V^2/2g)(L/d)}$	Friction head loss Velocity head	Pipe flow
	Skin friction coefficient	$c_f = \frac{\tau_{\text{wall}}}{\rho V^2/2}$	Wall shear stress Dynamic pressure	Boundary layer flow

© David Naylor

http://www.herbrich.com

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014. All rights reserved.