MEC516/BME516: Fluid Mechanics I

Chapter 5: Dimensional Analysis \& Similarity
Part 4

Overview

- Solved Example Dimensional Analysis
- Pi parameters for forced convective heat transfer from an isothermal cylinder in cross flow.
- Correlation of experimental data
- Dimensionless Parameters in Heat Transfer
- Nusselt number
- Reynolds number
- Prandtl number

Wilhelm Nusselt (1882-1952)

Dimensional Analysis Example

Convective Heat Transfer from a Cylinder
The convective heat transfer \dot{Q} from an isothermal cylinder can be expressed as:

$$
\dot{Q}=h A\left(T_{s}-T_{f}\right) \quad\left(W, \frac{J}{s}\right)
$$

where h is the convective heat transfer coefficient $\left(\frac{W}{m^{2} K}\right)$.
A is the surface area of the cylinder $\left(m^{2}\right)$
$\left(T_{s}-T_{f}\right)$ is the surface to fluid temperature difference $\left(K_{\text {or }}{ }^{o} \mathrm{C}\right.$)

This is called Newton's Law of Cooling.
(The mechanical engineers will see this again in MEC701 Heat Transfer)

Example: Heat Transfer from a Cylinder

Problem Statement:
Newton's Law of Cooling $\quad \dot{Q}=h A\left(T_{s}-T_{f}\right)$

The heat transfer coefficient h is a function of:

- Geometry: D
- Fluid Properties: specific heat, c_{p} dyn. viscosity, μ thermal conductivity, k density, ρ
- External Effects: free stream velocity, V

Given that $h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)$ find the Pi terms that characterize forced convective heat transfer.

To obtain the classical dimensionless paramters use D, μ, k, ρ for the repeating variables. (Recall, the Pi parameters are not unique and may depend upon your selection of repeaters).

Example: Heat Transfer from a Cylinder

Solution by Method of Repeating Variables (Six Steps)

Step 1: List the n variables in the problem

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

- You are told in the problem statement: $h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)$
- So, we have $n=7$ variables (including h)
\checkmark All variables are independent.
\checkmark Include relevant geometric effects, fluid properties, and external effects. (gravity g is not included. Buoyancy effects are assumed to be small).

Step 2: Express the variables in terms of basic dimensions:
Start with the obvious ones:

$$
\{D\}=\{L\} \quad\{V\}=\left\{\frac{L}{T}\right\}
$$

$$
\{\mu\}=\left\{\frac{M}{L T}\right\}
$$

$$
\{\rho\}=\left\{\frac{M}{L^{3}}\right\}
$$

Example: Heat Transfer from a Cylinder

$$
h \frac{W}{m^{2} K}=\frac{J}{s} \frac{1}{m^{2} K}=\frac{N m}{s m^{2} K}=\frac{k g m}{s^{2}} \frac{1}{s m K}\left\{\frac{M}{T^{3} \theta}\right\}
$$

$$
k \quad \frac{W}{m K}=\frac{J}{s} \frac{1}{m K}=\frac{N m}{s m K}=\frac{k g m}{s^{2}} \frac{1}{s K}\left\{\frac{M L}{T^{3} \theta}\right\}
$$

$$
c_{p} \frac{J}{\mathrm{~kg} k}=\frac{N m}{\mathrm{~kg} k}=\frac{\mathrm{kg} m}{\mathrm{~s}^{2}} \frac{m}{\mathrm{~kg} k}\left\{\frac{L^{2}}{T^{2} \theta}\right\}
$$

Thus: $\{D\}=\{L\}, \quad\{V\}=\left\{\frac{L}{T}\right\}, \quad\{\mu\}=\left\{\frac{M}{L T}\right\}, \quad\{\rho\}=\left\{\frac{M}{L^{3}}\right\}$

$$
\{h\}=\left\{\frac{M}{T^{3} \Theta}\right\}, \quad\{k\}=\left\{\frac{M L}{T^{3} \Theta}\right\}, \quad\left\{c_{p}\right\}=\left\{\frac{L^{2}}{T^{2} \Theta}\right\}
$$

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

Example: Heat Transfer from a Cylinder

$\{D\}=\{L\}, \quad\{V\}=\left\{\frac{L}{T}\right\}, \quad\{\mu\}=\left\{\frac{M}{L T}\right\}, \quad\{\rho\}=\left\{\frac{M}{L^{3}}\right\}$
$\{h\}=\left\{\frac{M}{T^{3} \Theta}\right\}, \quad\{k\}=\left\{\frac{M L}{T^{3} \Theta}\right\}, \quad\left\{c_{p}\right\}=\left\{\frac{L^{2}}{T^{2} \Theta}\right\}$

Step 3: Determine the number of Π parameters, $k=n-j$
We have $j=4$ basic dimensions: M, L, T, Θ.
We have $n=7$ variables.
\therefore From Buckingham Pi Theorem: $\quad k=n-j=7-4=3$
We will get three dimensionless Pi terms.

$$
\left.h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right) .\right)
$$

Example: Heat Transfer from a Cylinder

$\{D\}=\{L\}, \quad\{V\}=\left\{\frac{L}{T}\right\}, \quad\{\mu\}=\left\{\frac{M}{L T}\right\}, \quad\{\rho\}=\left\{\frac{M}{L^{3}}\right\}$
$\{h\}=\left\{\frac{M}{T^{3} \Theta}\right\}, \quad\{k\}=\left\{\frac{M L}{T^{3} \Theta}\right\}, \quad\left\{c_{p}\right\}=\left\{\frac{L^{2}}{T^{2} \Theta}\right\}$

Step 4: Select " $j=4$ " repeating variables from the " $n=7$ " variables To get the classical Pi parameters, you are told to pick D, μ, k, ρ as the repeating variables. Checks:
\checkmark All reference dimensions M, L, T, Θ must be included in the "repeaters".
\checkmark The repeating variables cannot themselves form a dimensionless product. A Rigorous check:

$$
D^{a} \mu^{b} k^{c} \rho^{d}=\{L\}^{a}\left\{\frac{M}{L T}\right\}^{b}\left\{\frac{M L}{T^{3} \Theta}\right\}^{c}\left\{\frac{M}{L^{3}}\right\}^{d}=M^{0} L^{0} T^{0} \Theta^{0}
$$

There are no non-zero values of a, b, c and d that can form a dimensionless product.

$$
\begin{aligned}
& \theta \quad \therefore c=0 \\
& T \quad-b-3 c=0 \quad \therefore b=0 \\
& M \quad b+c+d=0 \quad \therefore d=0 \\
& L \quad a-b+c-3 d=0 \quad \therefore a=0
\end{aligned}
$$

Example: Heat Transfer from a Cylinder

Step 5: Form $k=n-j=7-4=3$ Pi terms.

- We have three non-repeating variables: \overparen{G}, V, c_{p}

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

start with the dependent variable to form Π_{1}

$$
\Pi_{1}=h D^{a} \mu^{b} k^{c} \rho^{d}=\left\{\frac{M}{T^{3} \Theta}\right\}\{\underbrace{\{L\}^{a}\left\{\frac{M}{L T}\right\}^{b}\left\{\frac{M L}{T^{3} \Theta}\right\}^{c}\left\{\frac{M}{L^{3}}\right\}^{d}}_{4 \text { repeating variables }}=M^{0} L^{0} T^{0} \Theta^{0}
$$

Exponents for Θ :

$$
\text { Exponents for } M \text { : }
$$

$$
\text { Exponents for } L \text { : }
$$

$$
\begin{aligned}
& -1-\mathrm{c}=0 \quad \therefore c=-1 \\
& -3-b-3 c=0 \quad b=-3-3 c=-3-3(-1) \quad \therefore b=0 \\
& 1+\mathrm{b}+c+d=0 \quad d=-1-b-c=-1-0-(-1) \quad \therefore \quad d=0 \\
& a-b+c-3 d=0 \quad a=b-c+3 d \quad a=0-(-1)+3(0) \quad \therefore a=1
\end{aligned}
$$

$\Pi_{1}=h D^{1} \mu^{0} k^{-1} \rho^{0}$

$$
\Pi_{1}=\frac{h D}{k}
$$

Example: Heat Transfer from a Cylinder

Step 5: Form $k=n-j=7-4=3$ Pi terms,

- We have three non-repeating variables: $h, V c_{p}$

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

$$
\Pi_{2}=V D^{a} \mu^{b} k^{c} \rho^{d}=\left\{\frac{L}{T}\right\}\{L\}^{a}\left\{\frac{M}{L T}\right\}^{b}\left\{\frac{M L}{T^{3} \Theta}\right\}^{c}\left\{\frac{M}{L^{3}}\right\}^{d}=M^{0} L^{0} T^{0} \Theta^{0}
$$

Exponents for Θ :
Exponents for T :
Exponents for M :
Exponents for L :
$\Pi_{2}=V D^{1} \mu^{-1} k^{0} \rho^{1}$

$$
\begin{aligned}
& \therefore c=0 \\
& -1-b-3 c=0 \quad b=-1-3 c \quad \therefore b=-1 \\
& \mathrm{~b}+c+d=0 \quad d=-b-c \quad \therefore \quad d=1 \\
& 1+a-b+c-3 d=0 \quad a=-1+b-c+3 d \quad \therefore a=-1-1+3=1
\end{aligned}
$$

$$
\Pi_{2}=\frac{V D \rho}{\mu}=R e \quad \text { (Recognize as Reynolds number) }
$$

Example: Heat Transfer from a Cylinder

Step 5: Form $k=n-j=7-4=3$ Pi terms.

- We have three non-repeating variables: h, V, c_{p}

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

$$
\Pi_{3}=c_{p} D^{a} \mu^{b} k^{c} \rho^{d}=\left\{\frac{L^{2}}{T^{2} \Theta}\right\}\{L\}^{a}\left\{\frac{M}{L T}\right\}^{b}\left\{\frac{M L}{T^{3} \Theta}\right\}^{c}\left\{\frac{M}{L^{3}}\right\}^{d}=M^{0} L^{0} T^{0} \Theta^{0}
$$

Exponents for Θ
Exponents for T
$-1-\mathrm{c}=0 \therefore c=-1$

Exponents for M :
$-2-b-3 c=0 \quad b=-2-3 c=-2-3(-1) \quad \therefore b=1$

Exponents for L :
$\mathrm{b}+c+d=0 \quad d=-b-c=-1-(-1) \quad \therefore d=0$
$2+a-b+c-3 d=0 \quad a=-2+b-c+3 d \quad \therefore a=-2+1-(-1)=0$
$\Pi_{3}=c_{p} D^{0} \mu^{1} k^{-1} \rho^{0}$

$$
\Pi_{3}=\frac{c_{p} \mu}{k}
$$

Example: Heat Transfer from a Cylinder

We have shown:

$$
\Pi_{1}=\frac{h D}{k} \quad \Pi_{2}=\frac{V D \rho}{\mu} \quad \Pi_{3}=\frac{c_{p} \mu}{k}
$$

Step 6: Express the final form: $\Pi_{1}=f_{2}\left(\Pi_{2}, \Pi_{3}, \ldots.\right)$

- Put the dependent variable (h) in the numerator of Π_{1}.
- So, we get the result:

$$
\frac{h D}{k}=f_{2}\left(\frac{V D \rho}{\mu}, \frac{c_{p} \mu}{k}\right)
$$

Ans.

- That is as far as you would go on an exam. But, I will make some extra comments here.

Example: Heat Transfer from a Cylinder

$$
\frac{h D}{k}=f_{2}\left(\frac{V D \rho}{\mu}, \frac{c_{p} \mu}{k}\right) \quad \text { Ans. }
$$

Π_{1} is the Nusselt number: $N u=\frac{h D}{k}$

Wilhelm Nusselt (1882-1952)
Π_{2} is the Reynolds number: $R e=\frac{V D \rho}{\mu}$
Π_{3} is the Prandtl number: $\operatorname{Pr}=\frac{c_{p} \mu}{k}$

Osborne Reynolds (1842-1912)

Example: Heat Transfer from a Cylinder

$\frac{h D}{k}=f_{2}\left(\frac{V D \rho}{\mu}, \frac{c_{p} \mu}{k}\right) \quad N u=f_{2}(R e, \operatorname{Pr})$

$$
h=f_{1}\left(D, c_{p}, \mu, k, \rho, V\right)
$$

For air (fixed $\mathrm{Pr}=0.7$) this complex problem can be reduced to a single curve!

http://www.herbrich.com

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2014. All rights reserved.

