MEC516/BME516: Fluid Mechanics I

Chapter 5: Dimensional Analysis & Similarity Part 4

© David Naylor, 2014

Department of Mechanical & Industrial Engineering

© David Naylor

Overview

- Solved Example Dimensional Analysis
 - Pi parameters for forced convective heat transfer from an isothermal cylinder in cross flow.
 - Correlation of experimental data
- Dimensionless Parameters in Heat Transfer
 - Nusselt number
 - Reynolds number
 - Prandtl number

Wilhelm Nusselt (1882-1952)

© David Naylor

Dimensional Analysis Example

Convective Heat Transfer from a Cylinder

The convective heat transfer \dot{Q} from an isothermal cylinder can be expressed as:

$$\dot{Q} = h A \left(T_s - T_f \right) \qquad \left(W, \frac{J}{s} \right)$$

where *h* is the convective heat transfer coefficient $(\frac{W}{m^2 K})$. *A* is the surface area of the cylinder (m^2) $(T_s - T_f)$ is the surface to fluid temperature difference (*K* or ^oC)

This is called Newton's Law of Cooling.

(The mechanical engineers will see this again in MEC701 Heat Transfer)

4

Example: Heat Transfer from a Cylinder

Problem Statement:

Newton's Law of Cooling $\dot{Q} = h A (T_s - T_f)$

Fluid V, T_f

The heat transfer coefficient h is a function of:

- Geometry: *D*
- Fluid Properties: specific heat, c_p dyn. viscosity, μ thermal conductivity, k density, ρ
- External Effects: free stream velocity, V

Given that $h = f_1(D, c_p, \mu, k, \rho, V)$ find the Pi terms that characterize forced convective heat transfer.

To obtain the classical dimensionless paramters use D, μ , k, ρ for the repeating variables. (Recall, the Pi parameters are not unique and may depend upon your selection of repeaters).

Solution by Method of Repeating Variables (Six Steps)

<u>Step 1</u>: List the *n* variables in the problem

- You are told in the problem statement: $h = f_1(D, c_p, \mu, k, \rho, V)$
- So, we have n = 7 variables (including h)
- ✓ All variables are independent.
- ✓ Include relevant geometric effects, fluid properties, and external effects. (gravity g is not included. Buoyancy effects are assumed to be small).

Step 2: Express the variables in terms of basic dimensions:

Start with the obvious ones: $\{D\} = \{L\}$ $\{V\} = \left\{\frac{L}{T}\right\}$ $\{\mu\} = \left\{\frac{M}{LT}\right\}$ $\{\rho\} = \left\{\frac{M}{L^3}\right\}$

Example: Heat Transfer from a Cylinder

$$h \quad \underset{m^{2}K}{\swarrow} = \frac{J}{S} \underset{m^{2}K}{\downarrow} = \frac{M}{S} \underset{m^{2}K}{\swarrow} = \frac{k_{9}m}{S^{2}} \underset{m^{2}K}{\downarrow} \left\{ \frac{M}{T^{3}} \underset{m^{2}}{\bigoplus} \right\}$$

$$k \quad \underset{mK}{\bowtie} = \frac{J}{S} \underset{mK}{\downarrow} = \frac{M}{S} \underset{mK}{\bowtie} = \frac{k_{9}m}{S^{2}} \underset{mK}{\downarrow} \left\{ \frac{ML}{T^{3}} \right\}$$

$$Cp \quad \underbrace{J}_{Kg}K = \underset{Kg}{M} \underset{Kg}{\bowtie} = \underbrace{k_{9}m}{S^{2}} \underset{Kg}{m} \underset{Kg}{\bigwedge} \left\{ \frac{L^{2}}{T^{2}} \right\}$$
Thus: $\{D\} = \{L\}, \quad \{V\} = \left\{ \frac{L}{T} \right\}, \quad \{\mu\} = \left\{ \frac{M}{LT} \right\}, \quad \{\rho\} = \left\{ \frac{M}{L^{3}} \right\}$

$$\{h\} = \left\{ \frac{M}{T^{3}\Theta} \right\}, \quad \{k\} = \left\{ \frac{ML}{T^{3}\Theta} \right\}, \quad \{c_{p}\} = \left\{ \frac{L^{2}}{T^{2}\Theta} \right\}$$

Example: Heat Transfer from a Cylinder

$$\{D\} = \{L\}, \{V\} = \left\{\frac{L}{T}\right\}, \{\mu\} = \left\{\frac{M}{LT}\right\}, \{\rho\} = \left\{\frac{M}{L^3}\right\}$$

 $\{h\} = \left\{\frac{M}{T^3\Theta}\right\}, \{k\} = \left\{\frac{ML}{T^3\Theta}\right\}, \{c_p\} = \left\{\frac{L^2}{T^2\Theta}\right\}$

<u>Step 3</u>: Determine the number of Π parameters, k = n - jWe have j = 4 basic dimensions: M, L, T, Θ . We have n = 7 variables.

: From Buckingham Pi Theorem: k = n - j = 7 - 4 = 3

We will get three dimensionless Pi terms.

$$\{D\} = \{L\}, \ \{V\} = \left\{\frac{L}{T}\right\}, \ \{\mu\} = \left\{\frac{M}{LT}\right\}, \ \{\rho\} = \left\{\frac{M}{L^3}\right\}$$
$$\{h\} = \left\{\frac{M}{T^3\Theta}\right\}, \ \{k\} = \left\{\frac{ML}{T^3\Theta}\right\}, \ \{c_p\} = \left\{\frac{L^2}{T^2\Theta}\right\}$$

$$h = f_1(D, c_p, \mu, k, \rho, V)$$
Fluid V, T_f

<u>Step 4</u>: Select "j = 4" repeating variables from the "n = 7" variables To get the classical Pi parameters, you are told to pick D, μ, k, ρ as the repeating variables. Checks:

✓ All reference dimensions M, L, T, Θ must be included in the "repeaters".

✓ The repeating variables cannot themselves form a dimensionless product. A Rigorous check:

$$D^{a}\mu^{b}k^{c}\rho^{d} = \{L\}^{a}\left\{\frac{M}{LT}\right\}^{b}\left\{\frac{ML}{T^{3}\Theta}\right\}^{c}\left\{\frac{M}{L^{3}}\right\}^{d} = M^{0}L^{0}T^{0}\Theta^{0}$$

There are no non-zero values of *a*, *b*, *c* and *d* that can form a dimensionless product.

$$\Theta$$
 :: c=0
 T -b-3c=0::b=0
M b+c+d=0 :: d=0
L a-b+c-3d=0 :: a=0

Example: Heat Transfer from a Cylinder
Step 5: Form
$$k = n - j = 7 - 4 = 3$$
 Pi terms.
• We have three non-repeating variables: h, V, c_p
start with the dependent
variable to form Π_1

$$\Pi_1 = hD^a \mu^b k^c \rho^d = \left\{\frac{M}{T^3\Theta}\right\} \left\{L\right\}^a \left\{\frac{M}{LT}\right\}^b \left\{\frac{ML}{T^3\Theta}\right\}^c \left\{\frac{M}{L^3}\right\}^d = M^0 L^0 T^0 \Theta^0$$
4 repeating variables
Exponents for Θ : $-1 - c = 0$ $\therefore c = -1$
Exponents for T : $-3 - b - 3c = 0$ $b = -3 - 3c = -3 - 3(-1)$ $\therefore b = 0$
Exponents for M : $1 + b + c + d = 0$ $d = -1 - b - c = -1 - 0 - (-1)$ $\therefore d = 0$
Exponents for L : $a - b + c - 3d = 0$ $a = b - c + 3d$ $a = 0 - (-1) + 3(0) \therefore a = 1$

$$\Pi_1 = h D^1 \mu^0 k^{-1} \rho^0 \qquad \qquad \Pi_1 = \frac{h D}{k}$$

<u>Step 5</u>: Form k = n - j = 7 - 4 = 3 Pi terms. • We have three non-repeating variables: h,Vc_p

$$h = f_1(D, c_p, \mu, k, \rho, V)$$
Fluid V, T_f

$$\Pi_2 = V D^a \mu^b k^c \rho^d = \left\{ \frac{L}{T} \right\} \{L\}^a \left\{ \frac{M}{LT} \right\}^b \left\{ \frac{ML}{T^3 \Theta} \right\}^c \left\{ \frac{M}{L^3} \right\}^d = M^0 L^0 T^0 \Theta^0$$

Exponents for Θ :	$\therefore c = 0$
Exponents for <i>T</i> :	$-1 - b - 3c = 0$ $b = -1 - 3c$ $\therefore b = -1$
Exponents for <i>M</i> :	$\mathbf{b} + \mathbf{c} + \mathbf{d} = 0 \mathbf{d} = -\mathbf{b} - \mathbf{c} \therefore \mathbf{d} = 1$
Exponents for <i>L</i> :	$1 + a - b + c - 3d = 0$ $a = -1 + b - c + 3d$ $\therefore a = -1 - 1 + 3 = 1$
Exponents for <i>M</i> :	$b + c + d = 0 d = -b - c \therefore d = 1$

 $\Pi_2 = \frac{VD\rho}{\mu} = Re \qquad (\text{Recognize as Reynolds number})$ $\Pi_2 = V D^1 \mu^{-1} k^0 \rho^1$

<u>Step 5</u>: Form k = n - j = 7 - 4 = 3 Pi terms. • We have three non-repeating variables: h, V, c_p

$$h = f_1(D, c_p, \mu, k, \rho, V)$$
Fluid V, T_f

$$\Pi_{3} = c_{p} D^{a} \mu^{b} k^{c} \rho^{d} = \left\{ \frac{L^{2}}{T^{2} \Theta} \right\} \{L\}^{a} \left\{ \frac{M}{LT} \right\}^{b} \left\{ \frac{ML}{T^{3} \Theta} \right\}^{c} \left\{ \frac{M}{L^{3}} \right\}^{d} = M^{0} L^{0} T^{0} \Theta^{0}$$

Exponents for
$$\Theta$$
: $-1 - c = 0 \therefore c = -1$ Exponents for T: $-2 - b - 3c = 0$ $b = -2 - 3c = -2 - 3(-1)$ Exponents for M: $b + c + d = 0$ $d = -b - c = -1 - (-1)$ Exponents for L: $2 + a - b + c - 3d = 0$ $a = -2 + b - c + 3d$ $\therefore a = -2 + 1 - (-1) = 0$

$$\Pi_3 = c_p D^0 \mu^1 k^{-1} \rho^0 \qquad \qquad \Pi_3 = \frac{c_p \mu}{k}$$

Example: Heat Transfer from a Cylinder We have shown: $\Pi_1 = \frac{hD}{k} \ \Pi_2 = \frac{VD\rho}{\mu} \ \Pi_3 = \frac{c_p\mu}{k}$

<u>Step 6</u>: Express the final form: $\Pi_1 = f_2(\Pi_2, \Pi_3, ...)$

- Put the dependent variable (h) in the numerator of Π_1 .
- So, we get the result:

$$\frac{hD}{k} = f_2\left(\frac{VD\rho}{\mu}, \frac{c_p\mu}{k}\right)$$

• That is as far as you would go on an exam. But, I will make some extra comments here.

$$\frac{hD}{k} = f_2\left(\frac{VD\rho}{\mu}, \frac{c_p\mu}{k}\right)$$
 Ans.

 Π_1 is the Nusselt number: $Nu = \frac{hD}{k}$

Wilhelm Nusselt (1882-1952)

 Π_2 is the Reynolds number: $Re = \frac{VD\rho}{\mu}$

$$\Pi_3$$
 is the Prandtl number: $Pr = \frac{c_p \mu}{k}$

Ludwig Prandtl (1875-1953)

Osborne Reynolds (1842-1912)

$$\frac{hD}{k} = f_2\left(\frac{VD\rho}{\mu}, \frac{c_p\mu}{k}\right) \qquad \qquad Nu = f_2(Re, Pr)$$

For air (fixed Pr=0.7) this complex problem can be reduced to a single curve!

http://www.herbrich.com

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014. All rights reserved.