
MEC516/BME516:
Fluid Mechanics I

Chapter 5: Dimensional Analysis & 
Similarity 
Part 2

© David Naylor, 2014 (rev. 2022) Department of Mechanical
& Industrial Engineering



Overview
Dimensional Analysis

• Introduction
 General utility of dimensional analysis

• Buckingham Pi Theorem
 The method of repeating variables

• Example
 Dimensionless parameters for the drag force 

(“form drag”) for flow over a rectangular 
plate
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2www.nasa.gov

http://www.blwtl.uwo.ca/

Fluid
𝑉𝑉, ρ, μ



Introduction to Dimensional Analysis
• Many practical fluid flow problems are too complex to solve 

analytically, e.g. turbulent flow
 Must resort to experiments or approximate modelling (CFD)

• Question arises: How should we present the resulting data?

• This chapter will show that data are best presented in 
dimensionless form.
 most compact form (least effort & expense)
 most generality (not only for specific conditions)
 similarity (or similitude) used to relate results on a small scale 

physical model to the full scale problem, e.g. wind tunnel 
testing “scale up”. (Scaling will be discussed in an upcoming 
video).

• We will determine the dimensionless parameters using 
Dimensional Analysis

© David Naylor
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Boundary Layer Wind Tunnel (Univ. of Western Ontario)
• A pioneering centre for wind tunnel testing of large structures (buildings, bridges, towers, etc.)
• Similarity is used to scaled up data from small physical models to predict full scale behaviour.
• Confederation Bridge, New Brunswick to PEI (1997). Wind tunnel testing to predict: 
 Wind loads on span
 Affect of wind on cars on the driving deck. For what conditions can you still use the bridge? 
 Flow-induced vibrations, fluid-structure interactions. Called “aeroelestic testing”

© David Naylor
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Bridge at Tacoma Narrows (1940)
• Flow-induced vibration destroyed an early suspension bridge (Puget Sound, Oregon, USA)

• Nowadays large bridges are routinely wind tunnel tested
using (small) scaled models 

© David Naylor
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Principle of Dimensional Homogeneity (PDH)
Principle of Dimensional Homogeneity is the basis of dimensional analysis. 

Statement of PDH:
A complete equation that expresses the relationship between variables in a physical process must 
be dimensionally homogeneous. Additive terms must have the same dimensions.

For example, recall the Bernoulli equation applied on a streamline:

𝑝𝑝1
ρ +

1
2
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Buckingham Pi Theorem
Statement of the Buckingham Pi Theorem:
If an equation involving 𝑛𝑛 variables is dimensionally homogeneous, it can be reduced to a function 
of 𝑘𝑘 = 𝑛𝑛 − 𝑗𝑗 dimensionless products, where 𝑗𝑗 is the minimum number of reference dimensions 
needed to describe the variables.  

Consider a problem with 𝑛𝑛 variables:

𝑢𝑢1 = 𝑓𝑓1(𝑢𝑢2,𝑢𝑢3 … ,𝑢𝑢𝑛𝑛)

PDH requires that the dimensions on the left and right side of the equation must be the same.  
Such an equation can be expressed as a set of dimensionless products:

Π1 = 𝑓𝑓2 Π2,Π3, …Π𝑘𝑘

• The problem can be expressed in terms of 𝑘𝑘 = (𝑛𝑛 − 𝑗𝑗) dimensionless terms. Get a reduction in 
number of variables. (The symbol Π is used because the  dimensionless terms are products.)

© David Naylor
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Buckingham Pi Theorem
Method of Repeating Variables (Six Steps)

Step 1: List the 𝑛𝑛 variables in the problem.
• Based on your knowledge of the physics of the problem.
• This is vitally important to get all quantities (otherwise the Π parameters will be wrong!)
• Variables must describe the applicable effects. Three general categories:
 Geometry effects, e.g. pipe diameter, surface roughness, etc.
 Fluid properties, e.g. viscosity, density, surface tension, etc.
 External effects, e.g. driving pressure gradient.

• All variables must be independent. For example: 
 Do not include both pipe diameter 𝐷𝐷 and cross sectional area 𝐴𝐴𝑐𝑐 (since 𝐴𝐴𝑐𝑐 = 𝜋𝜋𝐷𝐷2/4).
 If fluid density and specific weight are important, list only two of: 𝜌𝜌, 𝛾𝛾,𝑔𝑔 (since 𝛾𝛾 = 𝜌𝜌𝑔𝑔)

© David Naylor
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Buckingham Pi Theorem
Step 2: Express each of the variables in terms of basic dimensions
• Use either  (M, L, T, Θ)  or (F, L, T, Θ). Recall the from F=ma: {F}={M L T-2} 
• See Table in Chapter 1:

• No need to memorize! If you know the units of a variable, you can deduce its dimensions

© David Naylor
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Buckingham Pi Theorem
Step 3: Determine the number of Π parameters 
• The Buckingham Pi Theorem says that the number of Pi terms is 𝑛𝑛 − 𝑗𝑗
 𝑛𝑛 is the number of independent variables
 𝑗𝑗 is the number of basic dimensions in the variables 

• 𝑗𝑗 is found from inspection of the variable dimensions in Step 2. 
An Aside: In rare cases the basic dimensions appear in combinations. So, the number of dimensions (𝑗𝑗) can 
be less then the number of dimensions used in the variables. See textbook for details.

Step 4: Select  "𝑗𝑗𝑗 repeating variables from the 𝑗𝑛𝑛𝑗 variables
• These “repeaters” will be in all the Pi terms.
• Rules for selecting the repeating variables:
 All the basic dimensions of the problem must be included in these “repeaters”.
 The repeating variables cannot themselves form dimensionless product. 
 Do not pick the parameter of interest as a “repeater” (it will get buried in all the Pi terms).

© David Naylor
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Buckingham Pi Theorem
Step 5: Form 𝑘𝑘 = 𝑛𝑛 − 𝑗𝑗 Pi terms, with repeating variables raised to an arbitrary exponent 
• Each of the 𝑘𝑘 Pi terms will have the form:

Π𝑖𝑖 = 𝑢𝑢𝑖𝑖 𝑢𝑢1𝑎𝑎1𝑢𝑢2𝑎𝑎2𝑢𝑢3𝑎𝑎3 …𝑢𝑢𝑗𝑗
𝑎𝑎𝑗𝑗 𝑖𝑖 = 1 … 𝑘𝑘

• The exponents 𝑎𝑎𝑎,𝑎𝑎𝑎,𝑎𝑎𝑗𝑗 are determined so the Pi product is dimensionless.
• One-by-one, we then solve for the exponents in the Pi terms: Π1,Π2, … ,Π𝑘𝑘.

Step 6: Express the final form: Π1 = 𝑓𝑓2 Π2,Π3, …Π𝑘𝑘
• Put the dependent variable (the variable of interest) in the numerator of Π1.
• The functional relationship can then be found by experiment (with greatly reduced effort). 

© David Naylor
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Example: Aerodynamic Drag on a Plate
Consider that we want to experimentally 
characterize the drag force 𝐹𝐹𝐷𝐷 on a rectangular 
plate produced by a flow of fluid perpendicular to 
the surface, e.g. wind loads on billboard signs. 

The drag force is a function of the flow velocity (𝑉𝑉)
and fluid properties (ρ and μ) and the dimensions 
of the rectangular plate. The plate has height ℎ and 
width 𝑤𝑤.

Determine the dimensionless parameters (Pi 
terms) needed to conduct the experiment. 

(This is a variation on the example that was 
mentioned in Part 1)

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 1: List the 𝑛𝑛 variables
In this case you are told in the problem statement:

𝐹𝐹𝐷𝐷 = 𝑓𝑓1(𝑤𝑤, ℎ,𝑉𝑉, μ, ρ)

So, we have 𝑛𝑛 = 6 variables.  (Don’t forget to count the dependent variable, 𝐹𝐹𝐷𝐷)

Why didn’t we include the plate area, 𝐴𝐴, as a variable?
Because 𝐴𝐴 = ℎ 𝑤𝑤 is not independent of  ℎ and 𝑤𝑤.

 Check that all parameters are independent. 

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 2: Express each of the variables in terms of basic dimensions.

• We will use (M, L, T, Θ) for this example.

𝐹𝐹𝐷𝐷 =
𝑀𝑀𝐿𝐿
𝑇𝑇2

𝑤𝑤 = 𝐿𝐿 ℎ = 𝐿𝐿

ρ =
𝑀𝑀
𝐿𝐿3

μ =
𝑀𝑀
𝐿𝐿𝑇𝑇

𝑉𝑉 =
𝐿𝐿
𝑇𝑇

Step 3: Determine the number of Π parameters 

We have 𝑗𝑗 = 3 basic dimensions: M,L,T
We have 𝑛𝑛 = 6 variables

∴ Buckingham Pi Theorem says we have 𝑘𝑘 = 𝑛𝑛 − 𝑗𝑗 = 6 − 3 = 3 dimensionless Pi terms. 

© David Naylor
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Example: Aerodynamic Drag on a Plate

Step 4: Select  "𝑗𝑗 = 3" repeating variables from the 𝑗𝑛𝑛 = 6" variables
Rules:
 Do not pick the dependent parameter (𝐹𝐹𝐷𝐷) as a “repeater”
 All reference dimensions must be included in the “repeaters”
 The repeating variables cannot themselves form a dimensionless product

We select 3 repeating variable (your choice, with above restrictions):  𝑤𝑤,𝑉𝑉, ρ (other choices are possible)

Let’s check the conditions above, given: 𝑤𝑤 = 𝐿𝐿 𝑉𝑉 = 𝐿𝐿
𝑇𝑇

ρ = 𝑀𝑀
𝐿𝐿3

 Contain 𝑀𝑀, 𝐿𝐿 and 𝑇𝑇

 Do not form dimensionless term:   𝑤𝑤𝑎𝑎𝑉𝑉𝑏𝑏ρ𝑐𝑐 = (𝐿𝐿)𝑎𝑎(𝐿𝐿
𝑇𝑇

)𝑏𝑏(𝑀𝑀
𝐿𝐿3

)𝑐𝑐= 𝐿𝐿0𝑀𝑀0𝑇𝑇0  𝑐𝑐 = 0, 𝑏𝑏 = 0,𝑎𝑎 = 0

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 5: Form 𝑘𝑘 = 𝑛𝑛 − 𝑗𝑗 = 6 − 3 = 3 Pi terms
• Using the three non-repeating variables:

𝐹𝐹𝐷𝐷 ℎ μ

Π1 = 𝐹𝐹𝐷𝐷𝑤𝑤𝑎𝑎1𝑉𝑉𝑏𝑏1ρ𝑐𝑐1 = (𝑀𝑀𝐿𝐿
𝑇𝑇2

)(𝐿𝐿)𝑎𝑎1(𝐿𝐿
𝑇𝑇

)𝑏𝑏1(𝑀𝑀
𝐿𝐿3

)𝑐𝑐1= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

Π2 = ℎ 𝑤𝑤𝑎𝑎2𝑉𝑉𝑏𝑏2ρ𝑐𝑐2 = (𝐿𝐿)(𝐿𝐿)𝑎𝑎2(𝐿𝐿
𝑇𝑇

)𝑏𝑏2(𝑀𝑀
𝐿𝐿3

)𝑐𝑐2= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

Π3 = μ 𝑤𝑤𝑎𝑎3𝑉𝑉𝑏𝑏3ρ𝑐𝑐3 = (
𝑀𝑀
𝐿𝐿𝑇𝑇

)(𝐿𝐿)𝑎𝑎3(
𝐿𝐿
𝑇𝑇

)𝑏𝑏3(
𝑀𝑀
𝐿𝐿3)𝑐𝑐3= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

• We now find  the exponents 𝑎𝑎𝑎, 𝑏𝑏𝑎, 𝑐𝑐𝑎 that make Π1
dimensionless. Repeat for Π2 and Π3.

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 5: Form the Pi terms
• We proceed one at a time, using the three 

non-repeating variables: 𝐹𝐹𝐷𝐷

Π1 = 𝐹𝐹𝐷𝐷𝑤𝑤𝑎𝑎𝑉𝑉𝑏𝑏ρ𝑐𝑐 = (𝑀𝑀𝐿𝐿
𝑇𝑇2

)(𝐿𝐿)𝑎𝑎(𝐿𝐿
𝑇𝑇

)𝑏𝑏(𝑀𝑀
𝐿𝐿3

)𝑐𝑐= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

We can now find the values of  𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 that will make Π1 dimensionless:

Exponents for 𝑀𝑀:  1 + 𝑐𝑐 = 0 ∴ 𝑐𝑐 = −1
Exponents for 𝑇𝑇: −2 − 𝑏𝑏 = 0 ∴ 𝑏𝑏 = −2
Exponents for 𝐿𝐿:  1 + 𝑎𝑎 + 𝑏𝑏 − 3𝑐𝑐 = 0 → 𝑎𝑎 = 3𝑐𝑐 − 𝑏𝑏 − 1 ∴ 𝑎𝑎 = −2

So, Π1 = 𝐹𝐹𝐷𝐷𝑤𝑤−2𝑉𝑉−2ρ−1 Π1 = 𝐹𝐹𝐷𝐷
𝑤𝑤2 𝑉𝑉2 ρ

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 5: Form the Pi terms
• We proceed one at a time, using the three 

non-repeating variables: ℎ

Π2 = ℎ 𝑤𝑤𝑎𝑎𝑉𝑉𝑏𝑏ρ𝑐𝑐 = (𝐿𝐿)(𝐿𝐿)𝑎𝑎(𝐿𝐿
𝑇𝑇

)𝑏𝑏(𝑀𝑀
𝐿𝐿3

)𝑐𝑐= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

Again, we find the values of  𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 that will make Π2 have no dimensions:

Exponents for  𝑀𝑀:  𝑐𝑐 = 0
Exponents for 𝑇𝑇: −𝑏𝑏 = 0
Exponents for 𝐿𝐿:  1 + a + 𝑏𝑏 − 3𝑐𝑐 = 0 → 𝑎𝑎 = −1

So, Π2 = ℎ𝑤𝑤−1𝑉𝑉0ρ0 Π2 = ℎ
𝑤𝑤

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 5: Form the Pi terms
• We proceed one at a time, using the three 

non-repeating variables: μ

Π3 = μ 𝑤𝑤𝑎𝑎𝑉𝑉𝑏𝑏ρ𝑐𝑐 = (𝑀𝑀
𝐿𝐿𝑇𝑇

)(𝐿𝐿)𝑎𝑎(𝐿𝐿
𝑇𝑇

)𝑏𝑏(𝑀𝑀
𝐿𝐿3

)𝑐𝑐= 𝐿𝐿0𝑀𝑀0𝑇𝑇0

Again, we find the values of  𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 that will make Π3 have no dimensions:

Exponents for  𝑀𝑀:  1 + 𝑐𝑐 = 0 ∴ 𝑐𝑐 = −1
Exponents for 𝑇𝑇: −1 − 𝑏𝑏 = 0 ∴ 𝑏𝑏 = −1
Exponents for 𝐿𝐿:  −1 + 𝑎𝑎 + 𝑏𝑏 − 3𝑐𝑐 = 0 → 𝑎𝑎 = 3𝑐𝑐 − 𝑏𝑏 + 1 ∴ 𝑎𝑎 = −1

So, Π3 = μ 𝑤𝑤−1𝑉𝑉−1ρ−1 Π3 = μ
𝑤𝑤𝑉𝑉ρ

© David Naylor
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Example: Aerodynamic Drag on a Plate
Step 6: Express the final form: Π1 = 𝑓𝑓2 Π2,Π3
• Recall: Put the dependent variable in the numerator of Π1

• We have shown: 

Π1 = 𝐹𝐹𝐷𝐷
𝑤𝑤2 𝑉𝑉2 ρ

, Π2 = ℎ
𝑤𝑤

, Π3 = μ
𝑤𝑤𝑉𝑉ρ

So,  𝐹𝐹𝐷𝐷
𝑤𝑤2 ρ 𝑉𝑉2

= 𝑓𝑓2( ℎ
𝑤𝑤

, μ
𝑤𝑤𝑉𝑉ρ

)

Any Pi parameter can be inverted, since the functional relationship is unknown. So, we can write:

𝐹𝐹𝐷𝐷
𝑤𝑤2 ρ 𝑉𝑉2 = 𝑓𝑓3(

ℎ
𝑤𝑤 ,

ρ𝑉𝑉 𝑤𝑤
μ )

© David Naylor
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Example: Aerodynamic Drag on a Plate

• Rewriting:
𝐹𝐹𝐷𝐷

𝑤𝑤2 ρ 𝑉𝑉2
= 𝑓𝑓3( ℎ

𝑤𝑤
, ρ𝑉𝑉𝑤𝑤

μ
)

• This is as far as dimensional analysis can go. The unknown function 𝑓𝑓3 cannot be determined by 
dimensional analysis. 

• Experiments can be conducted to find this function (with greatly reduced effort). 

Note
• These Pi parameters are not unique. They depend upon the initial choice of “repeaters”. If you 

pick different repeating variables, you will get different Pi parameters.

© David Naylor
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Example: Aerodynamic Drag on a Plate

• Rewriting:
𝐹𝐹𝐷𝐷

𝑤𝑤2 ρ 𝑉𝑉2
= 𝑓𝑓3( ℎ

𝑤𝑤
, ρ𝑉𝑉𝑤𝑤

μ
)

• This result stems from the principle of dimensional homogeneity 
(PDH). Same general result as introduced in Part 1. 

• Reduction from 6 dimensional to 3 dimensionless variables. 

• For fixed geometry (ℎ/𝑤𝑤), the dimensionless drag
forces is only a function of Reynolds number. 

• Thus, only a single set of experiments in a single 
fluid is needed for each aspect ratio!  

© David Naylor
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Dimensionless 
drag force

Geometry
(aspect ratio)

Reynolds 
number

Re =
ρ𝑉𝑉𝑤𝑤
μ

𝐹𝐹𝐷𝐷
𝑤𝑤2 ρ 𝑉𝑉2

ℎ
𝑤𝑤 = 1

ℎ
𝑤𝑤 = 2

(hypothetical curves)



END NOTES
Presentation prepared and delivered by Dr. David Naylor.
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CFD simulation of flow-induced vibration of a cable.
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