MEC516/BME516: Fluid Mechanics I

Chapter 5: Dimensional Analysis & Similarity Part 2

RYERSON UNIVERSITY

Department of Mechanical & Industrial Engineering

© David Naylor, 2014 (rev. 2022)

Overview

Dimensional Analysis

- Introduction
 - General utility of dimensional analysis
- Buckingham Pi Theorem
 - The method of repeating variables
- Example
 - Dimensionless parameters for the drag force ("form drag") for flow over a rectangular plate

Introduction to Dimensional Analysis

- Many practical fluid flow problems are too complex to solve analytically, e.g. turbulent flow
 - Must resort to experiments or approximate modelling (CFD)
- Question arises: How should we present the resulting data?
- This chapter will show that data are best presented in dimensionless form.
 - most compact form (least effort & expense)
 - most generality (not only for specific conditions)
 - similarity (or similitude) used to relate results on a small scale physical model to the full scale problem, e.g. wind tunnel testing "scale up". (Scaling will be discussed in an upcoming video).
- We will determine the dimensionless parameters using Dimensional Analysis

www.nasa.gov

Boundary Layer Wind Tunnel (UWO) http://www.alumni.westernu.ca/

Boundary Layer Wind Tunnel (Univ. of Western Ontario)

- A pioneering centre for wind tunnel testing of large structures (buildings, bridges, towers, etc.)
- Similarity is used to scaled up data from small physical models to predict full scale behaviour.
- Confederation Bridge, New Brunswick to PEI (1997). Wind tunnel testing to predict:
 - Wind loads on span
 - Affect of wind on cars on the driving deck. For what conditions can you still use the bridge?
 - Flow-induced vibrations, fluid-structure interactions. Called "aeroelestic testing"

Bridge at Tacoma Narrows (1940)

- Flow-induced vibration destroyed an early suspension bridge (Puget Sound, Oregon, USA)
- Nowadays large bridges are routinely wind tunnel tested using (small) scaled models

Principle of Dimensional Homogeneity (PDH)

Principle of Dimensional Homogeneity is the basis of dimensional analysis.

Statement of PDH:

A complete equation that expresses the relationship between variables in a physical process must be dimensionally homogeneous. Additive terms must have the same dimensions.

No need to memorize!

For example, recall the Bernoulli equation applied on a streamline:

$$\frac{p_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{p_2}{\rho} + \frac{1}{2}V_2^2 + gz_2$$

$$\left\{\frac{L^2}{T^2}\right\} \quad \left\{\frac{L^2}{T^2}\right\} \quad \left\{\frac{L^2}{T^2}\right\} \quad \left\{\frac{L^2}{T^2}\right\} \quad \left\{\frac{L^2}{T^2}\right\} \quad \left\{\frac{L^2}{T^2}\right\}$$

 $\frac{P}{P} \Longrightarrow \frac{N}{m^2} \frac{m^3}{kg} = \frac{Nm}{kg} = \frac{kgm}{s^2} \frac{m}{kg} = \frac{m^2}{s^2}$

Statement of the Buckingham Pi Theorem:

If an equation involving n variables is dimensionally homogeneous, it can be reduced to a function of k = n - j dimensionless products, where j is the minimum number of reference dimensions needed to describe the variables.

Consider a problem with *n* variables:

$$u_1 = f_1(u_2, u_3 \dots, u_n)$$

Dependent variable

PDH requires that the dimensions on the left and right side of the equation must be the same. Such an equation can be expressed as a set of dimensionless products:

$$\Pi_1=f_2(\Pi_2,\Pi_3,\dots\Pi_k\,)$$

• The problem can be expressed in terms of k = (n - j) dimensionless terms. Get a reduction in number of variables. (The symbol Π is used because the dimensionless terms are products.)

Method of Repeating Variables (Six Steps)

<u>Step 1</u>: List the n variables in the problem.

- Based on your knowledge of the physics of the problem.
- This is vitally important to get all quantities (otherwise the Π parameters will be wrong!)
- Variables must describe the <u>applicable</u> effects. Three general categories:
 - Geometry effects, e.g. pipe diameter, surface roughness, etc.
 - Fluid properties, e.g. viscosity, density, surface tension, etc.
 - External effects, e.g. driving pressure gradient.
- All variables must be independent. For example:
 - Do not include both pipe diameter D and cross sectional area A_c (since $A_c = \pi D^2/4$).
 - If fluid density and specific weight are important, list only two of: ρ , γ , g (since $\gamma = \rho g$)

Step 2: Express each of the variables in terms of basic dimensions

- Use either (M, L, T, Θ) or (F, L, T, Θ). Recall the from **F**=m**a**: {F}={M L T⁻²}
- See Table in Chapter 1:

Secondary dimension	SI unit	BG unit	Conversion factor
Area $\{L^2\}$	m ²	ft ²	$1 \text{ m}^2 = 10.764 \text{ ft}^2$
Volume $\{L^3\}$	m^3	ft ³	$1 \text{ m}^3 = 35.315 \text{ ft}^3$
Velocity $\{LT^{-1}\}$	m/s	ft/s	1 ft/s = 0.3048 m/s
Acceleration $\{LT^{-2}\}$	m/s^2	ft/s^2	$1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2$
Pressure or stress $\{ML^{-1}T^{-2}\}$	$Pa = N/m^2$	lbf/ft ²	$1 \text{ lbf/ft}^2 = 47.88 \text{ Pa}$
Angular velocity $\{T^{-1}\}$	s^{-1}	s^{-1}	$1 \text{ s}^{-1} = 1 \text{ s}^{-1}$
Energy, heat, work $\{ML^2T^{-2}\}$	$J = N \cdot m$	ft · lbf	$1 \text{ ft} \cdot \text{lbf} = 1.3558 \text{ J}$
Power $\{ML^2T^{-3}\}$	W = J/s	ft \cdot lbf/s	$1 \text{ ft} \cdot \text{lbf/s} = 1.3558 \text{ W}$
Density $\{ML^{-3}\}$	kg/m ³	slugs/ft ³	$1 \text{ slug/ft}^3 = 515.4 \text{ kg/m}^3$
Viscosity $\{ML^{-1}T^{-1}\}$	$kg/(m \cdot s)$	slugs/(ft \cdot s)	$1 \text{ slug/(ft} \cdot \text{s}) = 47.88 \text{ kg/(m} \cdot \text{s})$
Specific heat $\{L^2T^{-2}\Theta^{-1}\}$	$m^2/(s^2 \cdot K)$	$ft^2/(s^2 \cdot {}^\circ R)$	$1 \text{ m}^2/(\text{s}^2 \cdot \text{K}) = 5.980 \text{ ft}^2/(\text{s}^2 \cdot \text{°R})$

• No need to memorize! If you know the units of a variable, you can deduce its dimensions

<u>Step 3</u>: Determine the number of Π parameters

- The Buckingham Pi Theorem says that the number of Pi terms is n-j
 - n is the number of independent variables
 - *j* is the number of basic dimensions in the variables
- *j* is found from inspection of the variable dimensions in Step 2.

An Aside: In rare cases the basic dimensions appear in combinations. So, the number of dimensions (j) can be less then the number of dimensions used in the variables. See textbook for details.

<u>Step 4</u>: Select "j" repeating variables from the "n" variables

- These "repeaters" will be in all the Pi terms.
- Rules for selecting the repeating variables:
 - All the basic dimensions of the problem must be included in these "repeaters".
 - The repeating variables cannot themselves form dimensionless product.
 - Do not pick the parameter of interest as a "repeater" (it will get buried in all the Pi terms).

<u>Step 5</u>: Form k = n - j Pi terms, with repeating variables raised to an arbitrary exponent

• Each of the k Pi terms will have the form:

$$\Pi_{i} = \underbrace{u_{i}}_{i} \underbrace{u_{1}^{a1} u_{2}^{a2} u_{3}^{a3} \dots u_{j}^{aj}}_{\text{(k" non-repeating "j" repeating variables}} i = 1 \dots k$$

- The exponents *a*1, *a*2, *aj* are determined so the Pi product is dimensionless.
- One-by-one, we then solve for the exponents in the Pi terms: $\Pi_1, \Pi_2, ..., \Pi_k$.

<u>Step 6</u>: Express the final form: $\Pi_1 = f_2(\Pi_2, \Pi_3, ..., \Pi_k)$

- Put the dependent variable (the variable of interest) in the numerator of Π_1 .
- The functional relationship can then be found by experiment (with greatly reduced effort).

Consider that we want to experimentally characterize the drag force F_D on a rectangular plate produced by a flow of fluid perpendicular to the surface, e.g. wind loads on billboard signs.

The drag force is a function of the flow velocity (V)and fluid properties (ρ and μ) and the dimensions of the rectangular plate. The plate has height h and width w.

Determine the dimensionless parameters (Pi terms) needed to conduct the experiment.

(This is a variation on the example that was mentioned in Part 1)

<u>Step 1</u>: List the *n* variables

In this case you are told in the problem statement:

 $F_D = f_1(w, h, V, \mu, \rho)$

So, we have n = 6 variables. (Don't forget to count the dependent variable, F_D)

Why didn't we include the plate area, A, as a variable?

Because A = h w is not independent of h and w.

✓ Check that all parameters are independent.

<u>Step 2</u>: Express each of the variables in terms of basic dimensions.

• We will use (M, L, T, Θ) for this example.

$$\{F_D\} = \left\{\frac{ML}{T^2}\right\} \qquad \{w\} = \{L\} \qquad \{h\} = \{L\}$$

$$\{\rho\} = \left\{\frac{M}{L^3}\right\} \qquad \{\mu\} = \left\{\frac{M}{LT}\right\} \qquad \{V\} = \left\{\frac{L}{T}\right\}$$

$$M = \left\{\frac{M}{LT}\right\} \qquad \{V\} = \left\{\frac{L}{T}\right\}$$

$$M = \left\{\frac{M}{M^2}\right\} \qquad M = \left\{\frac{M}{M^2}\right\} \qquad M = \left\{\frac{M}{M^2}\right\} \qquad M = \left\{\frac{M}{M^2}\right\} \qquad M = \left\{\frac{M}{M^2}\right\}$$

$$M = \left\{\frac{M}{M^2}\right\} \qquad M = \left\{\frac{M}{M^2}\right\}$$

$$M = have j = 3 basic dimensions: M, L, T$$

$$We have n = 6 variables$$
(No need to memorize. But you should know Newton's Law of Viscosity)

FLUID

V.P.M

: Buckingham Pi Theorem says we have k = n - j = 6 - 3 = 3 dimensionless Pi terms.

<u>Step 4</u>: Select "j = 3" repeating variables from the "n = 6" variables Rules:

- Do not pick the dependent parameter (F_D) as a "repeater"
- All reference dimensions must be included in the "repeaters"
- The repeating variables cannot themselves form a dimensionless product

 $F_D = f_1(w,h,V,\mu,\rho)$

(other choices are possible)

We select 3 repeating variable (your choice, with above restrictions): w, V, ρ Let's check the conditions above, given: $\{w\} = \{L\} \ \{V\} = \left\{\frac{L}{T}\right\} \ \{\rho\} = \left\{\frac{M}{L^3}\right\}$

match exponents, left = right

 \checkmark Contain *M*, *L* and *T*

✓ Do not form dimensionless term: $w^a V^b \rho^c = (L)^a (\frac{L}{T})^b (\frac{M}{L^3})^c = L^0 M^0 T^0$ → c = 0, b = 0, a = 0

(: non-zero values of *a*, *b* and *c* do not exist that would produce a dimensionless term)

<u>Step 5</u>: Form k = n - j = 6 - 3 = 3 Pi terms

• Using the three non-repeating variables:

• We now find the exponents a_1, b_1, c_1 that make Π_1 dimensionless. Repeat for Π_2 and Π_3 .

 $F_D = f_1(w, h, V, \mu, \rho)$

Step 5: Form the Pi terms

• We proceed one at a time, using the three non-repeating variables: F_D

$$\Pi_1 = F_D w^a V^b \rho^c = \left(\frac{ML}{T^2}\right) (L)^a \left(\frac{L}{T}\right)^b \left(\frac{M}{L^3}\right)^c = L^0 M^0 T^0$$

 $F_D = f_1(w, h, V, \mu, \rho)$

We can now find the values of a, b and c that will make Π_1 dimensionless:

Exponents for M:1 + c = 0 $\therefore c = -1$ Exponents for T:-2 - b = 0 $\therefore b = -2$ Exponents for L: $1 + a + b - 3c = 0 \rightarrow a = 3c - b - 1$ $\therefore a = -2$

So, $\Pi_1 = F_D w^{-2} V^{-2} \rho^{-1}$ $\Pi_1 = \frac{F_D}{w^2 V^2 \rho}$ \checkmark dimensionless

Step 5: Form the Pi terms

• We proceed one at a time, using the three non-repeating variables: *h*

$$\Pi_2 = h \, w^a V^b \rho^c = (L) (L)^a (\frac{L}{T})^b (\frac{M}{L^3})^c = L^0 M^0 T^0$$

Again, we find the values of a, b and c that will make Π_2 have no dimensions:

Exponents for M:c = 0Exponents for T:-b = 0Exponents for L: $1 + a + b - 3c = 0 \rightarrow a = -1$

So, $\Pi_2 = hw^{-1}V^0\rho^0$ $\Pi_2 = \frac{h}{w}$ \checkmark dimensionless

Step 5: Form the Pi terms

- We proceed one at a time, using the three non-repeating variables: $\boldsymbol{\mu}$

$$\Pi_3 = \mu \, w^a V^b \rho^c = (\frac{M}{LT}) (L)^a (\frac{L}{T})^b (\frac{M}{L^3})^c = L^0 M^0 T^0$$

FLUID V, 9, M

 $F_D = f_1(w, h, V, \mu, \rho)$

Exponents for M:1 + c = 0 $\therefore c = -1$ Exponents for T:-1 - b = 0 $\therefore b = -1$ Exponents for L: $-1 + a + b - 3c = 0 \rightarrow a = 3c - b + 1$ $\therefore a = -1$

Again, we find the values of a, b and c that will make Π_3 have no dimensions:

So,
$$\Pi_3 = \mu w^{-1} V^{-1} \rho^{-1}$$

 $\Pi_3 = \frac{\mu}{wV\rho}$ \checkmark dimensionless
(recognize as 1/Re)

<u>Step 6</u>: Express the final form: $\Pi_1 = f_2(\Pi_2, \Pi_3)$

- Recall: Put the dependent variable in the numerator of Π_1
- We have shown:

$$\Pi_{1} = \frac{F_{D}}{w^{2} V^{2} \rho}, \quad \Pi_{2} = \frac{h}{w}, \quad \Pi_{3} = \frac{\mu}{wV\rho}$$

So, $\frac{F_{D}}{w^{2} \rho V^{2}} = f_{2}(\frac{h}{w}, \frac{\mu}{wV\rho})$

Any Pi parameter can be inverted, since the functional relationship is unknown. So, we can write:

$$\frac{F_D}{w^2 \rho V^2} = f_3(\frac{h}{w}, \frac{\rho V w}{\mu})$$

• Rewriting:

- This is as far as dimensional analysis can go. The unknown function f_3 cannot be determined by dimensional analysis.
- Experiments can be conducted to find this function (with greatly reduced effort).

<u>Note</u>

• These Pi parameters are not unique. They depend upon the initial choice of "repeaters". If you pick different repeating variables, you will get different Pi parameters.

• Rewriting:

$$\frac{F_D}{w^2 \rho V^2} = f_3(\frac{h}{w}, \frac{\rho V w}{\mu})$$

Dimensionless Geometry drag force (aspect ratio)

Reynolds) number

- This result stems from the principle of dimensional homogeneity (PDH). Same general result as introduced in Part 1.
- Reduction from 6 dimensional to 3 dimensionless variables.
- For fixed geometry (*h*/*w*), the dimensionless drag forces is only a function of Reynolds number.
- Thus, only a single set of experiments in a single fluid is needed for each aspect ratio!

FLUID V, g, M

© David Naylor

CFD simulation of flow-induced vibration of a cable.

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014 (rev. 2022). All rights reserved.

MEC516/BME516: Fluid Mechanics I

The Buckingham Pi Theorem

Department of Mechanical & Industrial Engineering