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Overview

* An Exact Solution to the Continuity and Navier-Stokes Equations
* Laminar incompressible flow in a round pipe
(Hagen-Poiseuille Flow).
* Solution in cylindrical coordinates: 1,0, z

e “Poiseuille’s Law” for flow in small tubes.
(Motivated in part by Poiseuille’s interest in blood flow
through capillaries.)

* Example o 3 s

Calculate the flow in a small tube using “Poiseuille’s
law”. Reynolds number calculation.

Density of -
gage fiud = 2000 kg'm”
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Steady Laminar Flow in a Circular Tube

Problem Definition

Consider steady laminar incompressible viscous flow in a round pipe.

Cylindrical coordinates V =V(r,z,0) = v, i+ vgj+ v, K

The flow is far from the pipe entrance. So, the flow is purely axial: v, = vy = 0.

Neglect gravity. (Adds hydrostatic pressure gradient; does not affect flow.)
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Steady Laminar Flow in a Circular Tube v =0

ok ™, :
 Start with the incompressible continuity equation |.¥ UHI.-'?E il ]
(conservation of mass) N | L |
.-':. \."'I | N |
0 l' _,.-"II Il-..\“h,__‘_ ___.--'.--""'l-l
;5( +—— 9)+_(vz)—
0
E(Uz) =0

* Flow is fully developed.

e . . 0 . o
* Velocity field and hence, the axial pressure gradient (6—5) does not change in the z direction.



Steady Laminar Flow in a Circular Tube

* Incompressible Navier-Stokes equation in the z-direction |

Conservation of z-momentum: [

Mo

v, v, v, z\ _6_p li( 6vz) 1 6\in
% \K Xi UZ%)_ 0z THGZ NS ) T = aé\l

no variation

steady v, =0 vg =0 fully dev. in 6
no swirl
.. . . . . . dp dp
* Similarly, conservation of momentum in r and 0 directions give: 5= 38 0
. : Ei( %) _dp _
So, we get: o \T )=, = const <0

az“g4

fully dev.

v p =p(z) only
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Ei(rﬁ) _dp \
rdr dr o dz ‘B

dL) 1dp \.J

d( ) = nas rdr g

. ' i ap _ : vy _ 1dp_» dvy _
Integrating (noting that o, = const): r = Zudzr + C;

. . . d
* The flow is symmetrical about the centre line (r = 0): f
r=0

dvy; 1 dp

Thus: =
dr 2pdz

?_ 2udz

=0 Thus, C, =0
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dv, _ 1 dp
dr 2udz

. . 1
Integrating again: v, = g 7

Now we use the no slip boundary condition r = R to evaluate C5:

1d
0=-—-2

2
= R + C,

So, the velocity field becomes:

Thus, C, = ——22 R

1 dp
4u dz

2

v, =

1 dp R2

4u dz
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This is the classical solution for laminar fully developed flow in a round tube, called Hagen-

Poiseuille Flow.
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[ (x>
. . 1 dp 2 2 |IIII |III|"IIr \II" Illll II.
The velocity field: V2 = T iz (R*—1%) | ||; _',H .' -
dri\ v‘&
>~ " NdA=2nrdr

* We can integrate this velocity field to get the volume flow rate:

r=R r=R 1 d
Q=j deA=j ———p(RZ—rz)andr
r=0 r

o Apdz
- - _ Ry
Result: Q = R
R* A caville’
* For a pipe of length L with pressure drop Ap: Q =— 7:3_11 Tp Poiseuille’s Law
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R* A
* For a pipe of length L with pressure drop Ap: Q=-— 7:3_11 Tp
Comments
: : . VD
 This result applies for laminar flow, Re<2300, where Re = pT

* The flow rate is surprisingly sensitive to the tube size! Q~D*

Medical Application

People with asthma take bronchodialtors (drugs that expands the
tiny air passages to the lungs). If the airway increases in diameter
by say 20%, the increase in air flow will be 1.2% = 2.1.

More than twice the air flow for the same breathing effort!
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Poiseuille’s Law
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Example

A liquid with dynamic viscosity of p = 0.002 Ns/m? and density p, = 1000 kg/m? flows at a
steady rate in a tube with an inside diameter of D = 4mm. A U-tube manometer with a gage fluid
with density p, = 2000 kg/m?3 is used to measure the pressure drop in the pipe. The
manometer deflection is Ah = 9.0 mm.

i 4 mm
(i) Calculate the flow rate Q in litres Q 59 l
per hour assuming laminar flow. : b (g
(ii) Use the result of part (i) to check that
the flow is laminar. W= 0_002_2
m
kg
pr =1000—
Density of

gage fluid = 2000 kg/m?
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Example

mR* Ap

(i) Poiseuille’s Law:
8u L

* The pressure taps are spaced at L = 2.0 m

* The pressure drop between the pressure taps is:

Ns
kg
Density of Ah = 9.0 mm

gage fluid = 2000 kg/m*

m k N
Ap = —(Vg - )/f)Ah = —g(pg — pf)Ah = —9.815—2(2000 —1000) m—‘i (0.009m) = —88.29 3

~ m(0.002)* m* (—88-29 ﬂz)

m _,m’
0= = 1.39 x 1077 — (1000

8 (o.ooz %) 20m

2 = 0.499 /hr

[
)3600 P

m3

Ans.
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Example xS
P ) 50 T )
. VD N
(ii) Reynolds number: Re = P - w= 0,002_“;
U m
k
o 1000m—€
0=VA= V”_Dz il AR =9.0mm
Density of ; '
gage fluid = 2000 kg/m*
m3

w07 m(0.004Zmz - oottim/s

V=

1000 k—%(o.onl =) 0.004m
Re = m =22.1

0.002 X9
Sm

Ans.
Re is less than ~ 2300. So, the flow is laminar.
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Computation Fluid Dynamics Simulation a Swimmer. A 3-D unsteady
flow with moving boundaries.

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014. All rights reserved.
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