MEC516/BME516: Fluid Mechanics I

Chapter 4: Differential Relations for Fluid Flow
Part 6

Overview

- An Exact Solution to the Continuity and Navier-Stokes Equations
- Laminar incompressible flow in a round pipe (Hagen-Poiseuille Flow).
- Solution in cylindrical coordinates: r, θ, z
- "Poiseuille's Law" for flow in small tubes. (Motivated in part by Poiseuille's interest in blood flow through capillaries.)
- Example

Calculate the flow in a small tube using "Poiseuille's law". Reynolds number calculation.

Steady Laminar Flow in a Circular Tube

Problem Definition

- Consider steady laminar incompressible viscous flow in a round pipe.
- Cylindrical coordinates $\boldsymbol{V}=\boldsymbol{V}(r, z, \theta)=v_{r} \mathbf{i}+v_{\theta} \mathbf{j}+v_{z} \mathbf{k}$
- The flow is far from the pipe entrance. So, the flow is purely axial: $v_{r}=v_{\theta}=0$.
- Neglect gravity. (Adds hydrostatic pressure gradient; does not affect flow.)

Steady Laminar Flow in a Circular Tube

- Start with the incompressible continuity equation (conservation of mass)

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \psi_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(v_{Z}\right)=0 \\
& \frac{\partial}{\partial z}\left(v_{Z}\right)=0
\end{aligned}
$$

- Flow is fully developed.
- Velocity field and hence, the axial pressure gradient $\left(\frac{\partial p}{\partial z}\right)$ does not change in the z direction.

Steady Laminar Flow in a Circular Tube

- Incompressible Navier-Stokes equation in the z-direction

Conservation of z-momentum:

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{z}}{\partial f}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{1}{r} v_{\rho} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial p_{z}}{\partial \delta_{z}}\right)=-\frac{\partial p}{\partial z}+\mu\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial v^{2}}{\partial v_{z}^{2}}+\frac{\partial v_{z}}{\partial z z}\right\} \\
& \text { steady } \quad v_{r}=0 \quad v_{\theta}=0 \quad \text { fully dev. } \\
& \text { no variation fully dev. } \\
& \text { no swirl } \\
& \text { in } \theta
\end{aligned}
$$

- Similarly, conservation of momentum in r and θ directions give: $\frac{\partial p}{\partial r}=\frac{\partial p}{\partial \theta}=0 \quad \therefore p=p(z)$ only
- So, we get:

$$
\frac{\mu}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=\frac{d p}{d z}=\text { const }<0
$$

Steady Laminar Flow in a Circular Tube

$$
\begin{aligned}
& \frac{\mu}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=\frac{d p}{d z} \\
& d\left(r \frac{d v_{z}}{d r}\right)=\frac{1}{\mu} \frac{d p}{d z} r d r
\end{aligned}
$$

- Integrating (noting that $\frac{d p}{d z}=$ const): $\quad r \frac{d v_{z}}{d r}=\frac{1}{2 \mu} \frac{d p}{d z} r^{2}+C_{1} \quad \frac{d v_{z}}{d r}=\frac{1}{2 \mu} \frac{d p}{d z} r+\frac{C_{1}}{r}$
- The flow is symmetrical about the centre line $(r=0):\left.\frac{d v_{z}}{d r}\right|_{r=0}=0 \quad$ Thus, $C_{1}=0$

Thus:

$$
\frac{d v_{Z}}{d r}=\frac{1}{2 \mu} \frac{d p}{d z} r
$$

Steady Laminar Flow in a Circular Tube

$$
\frac{d v_{z}}{d r}=\frac{1}{2 \mu} \frac{d p}{d z} r
$$

- Integrating again: $v_{z}=\frac{1}{4 \mu} \frac{d p}{d z} r^{2}+C_{2}$

- Now we use the no slip boundary condition $r=R$ to evaluate $C_{2}: \quad v_{z}(R)=0$

$$
0=\frac{1}{4 \mu} \frac{d p}{d z} R^{2}+C_{2} \quad \text { Thus, } C_{2}=-\frac{1}{4 \mu} \frac{d p}{d z} R^{2}
$$

- So, the velocity field becomes:

$$
v_{z}=-\frac{1}{4 \mu} \frac{d p}{d z}\left(R^{2}-r^{2}\right) \quad v_{\max }=-\frac{R^{2}}{4 \mu} \frac{d p}{d z}
$$

- This is the classical solution for laminar fully developed flow in a round tube, called HagenPoiseuille Flow.

Steady Laminar Flow in a Circular Tube

The velocity field: $\quad v_{z}=-\frac{1}{4 \mu} \frac{d p}{d z}\left(R^{2}-r^{2}\right)$

- We can integrate this velocity field to get the volume flow rate:

$$
Q=\int_{r=0}^{r=R} v_{z} d A=\int_{r=0}^{r=R}-\frac{1}{4 \mu} \frac{d p}{d z}\left(R^{2}-r^{2}\right) 2 \pi r d r
$$

- Result:

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{d p}{d z}
$$

- For a pipe of length L with pressure $\operatorname{drop} \Delta p$:

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\Delta p}{L}
$$

Steady Laminar Flow in a Circular Tube

- For a pipe of length L with pressure drop Δp :

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\Delta p}{L}
$$

Comments

- This result applies for laminar flow, $\operatorname{Re}<2300$, where $R e=\frac{\rho \bar{V} D}{\mu}$
- The flow rate is surprisingly sensitive to the tube size! $Q \sim D^{4}$

Medical Application

People with asthma take bronchodialtors (drugs that expands the tiny air passages to the lungs). If the airway increases in diameter by say 20%, the increase in air flow will be $1.2^{4}=2.1$.

More than twice the air flow for the same breathing effort!

Example

A liquid with dynamic viscosity of $\mu=0.002 \mathrm{Ns} / \mathrm{m}^{2}$ and density $\rho_{f}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ flows at a steady rate in a tube with an inside diameter of $D=4 \mathrm{~mm}$. A U-tube manometer with a gage fluid with density $\rho_{g}=2000 \mathrm{~kg} / \mathrm{m}^{3}$ is used to measure the pressure drop in the pipe. The manometer deflection is $\Delta h=9.0 \mathrm{~mm}$.
(i) Calculate the flow rate Q in litres per hour assuming laminar flow.
(ii) Use the result of part (i) to check that the flow is laminar.

Example

(i) Poiseuille's Law:

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\Delta p}{L}
$$

- The pressure taps are spaced at $L=2.0 \mathrm{~m}$
- The pressure drop between the pressure taps is:

$$
\begin{gathered}
\Delta p=-\left(\gamma_{g}-\gamma_{f}\right) \Delta h=-g\left(\rho_{g}-\rho_{f}\right) \Delta h=-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(2000-1000) \frac{\mathrm{kg}}{\mathrm{~m}^{3}}(0.009 \mathrm{~m})=-88.29 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
Q=-\frac{\pi(0.002)^{4} \mathrm{~m}^{4}}{8\left(0.002 \frac{N s}{m^{2}}\right)} \frac{\left(-88.29 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)}{2.0 \mathrm{~m}}=1.39 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\left(1000 \frac{\mathrm{l}}{\mathrm{~m}^{3}}\right) 3600 \frac{\mathrm{~s}}{\mathrm{hr}}=0.499 \mathrm{l} / \mathrm{hr}
\end{gathered}
$$

Ans.

Example

(ii) Reynolds number: $\quad \operatorname{Re}=\frac{\rho \bar{V} D}{\mu}$

$$
Q=\bar{V} A=\bar{V} \frac{\pi D^{2}}{4}
$$

$\operatorname{Re}=\frac{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left(0.0111 \frac{\mathrm{~m}}{\mathrm{~s}}\right) 0.004 \mathrm{~m}}{0.002 \frac{\mathrm{~kg}}{\mathrm{sm}}}=22.1$

$$
\bar{V}=\frac{4 Q}{\pi D^{2}}=\frac{4\left(1.39 \times 10^{-7} \frac{\mathrm{~m}^{3}}{s}\right)}{\pi(0.004)^{2} \mathrm{~m}^{2}}=0.0111 \mathrm{~m} / \mathrm{s}
$$

Ans.
$R e$ is less than ~ 2300. So, the flow is laminar.

Computation Fluid Dynamics Simulation a Swimmer. A 3-D unsteady flow with moving boundaries.

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2014. All rights reserved.

