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Overview
• Two Exact Solutions to the Continuity and 

Navier-Stokes Equations 
• Laminar flow between fixed parallel plates 

(Poiseuille Flow).

• Laminar flow between parallel plates with 
one plate moving (Couette Flow). 

© David Naylor

2

Jean Léonard Marie Poiseuille 
(1797-1869)



Laminar Flow Between Fixed Parallel Plates
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Problem Definition
• Consider steady laminar incompressible viscous flow 

between fixed parallel plates a distance 2ℎ apart. 
• Plates are very wide and long. So, the flow is purely 

axial:  𝑣𝑣 = 𝑤𝑤 = 0. 
• Neglect gravity effects. (Adds hydrostatic press. gradient)

Continuity Equation:
(incompressible) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

• So, the flow is called fully developed.  No flow entrance effects remain.

𝑣𝑣 = 0 𝑤𝑤 = 0


𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ∴ 𝑢𝑢 is not changing in the x-direction.



A Brief Side Comment: Developing Flow
• The velocity profile is initially uniform at the inlet.
• Boundary layers grow on both walls due to viscous drag.
• Boundary layers merge on the centre line.

• Velocity profile stops changing in x-direction, 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= 0
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Current exact solution is for flow 
that is fully developed,  𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
= 0



Laminar Flow Between Fixed Parallel Plates
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Problem Definition
• Consider steady laminar incompressible viscous flow 

between fixed parallel plates a distance 2ℎ apart. 
• Plates are very wide and long. So, the flow is purely 

axial, 1-D flow:  𝑣𝑣 = 𝑤𝑤 = 0. 
• Neglect gravity effects. (Adds hydrostatic press. gradient in y)

Continuity Equation:
(incompressible) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ∴ 𝑢𝑢 is not changing in the x-direction.

• So, the flow is called fully developed.  No flow entrance effects remain.

𝑣𝑣 = 0 𝑤𝑤 = 0



Laminar Flow Between Fixed Parallel Plates
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• We have 1-D flow. So, we write the Navier-Stokes
equation in the x-direction.

x-momentum:

ρ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ µ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

+ ρ𝑔𝑔𝑥𝑥

• Note that the non-linear terms are zero, which makes the analytical solution much easier. 

• Since 𝑣𝑣 = 𝑤𝑤 = 0 and gravity is neglected, y- and z- momentum equations give:    𝜕𝜕𝑝𝑝
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝑝𝑝 = 𝑝𝑝(𝑥𝑥)

• Simplifying: 

µ 𝑑𝑑
2𝑢𝑢

𝑑𝑑𝑦𝑦2
= 𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Note the full derivatives! This is an Ordinary Differential Equation (ODE) not a Partial Differential Equation (PDE).

steady 𝑤𝑤 = 0𝑣𝑣 = 0
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = 0 𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥 = 0

Non-linear convective terms



Laminar Flow Between Fixed Parallel Plates
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µ
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

=
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• Why does this expression equal a constant? 

• Recall from “separation of variables” method (MTH309): Two equal quantities, 
one varies with x only (𝑝𝑝 𝑥𝑥 ), one varies with y only (𝑢𝑢(𝑦𝑦)). The can be true is
only if they equal a constant. Otherwise they would be independent!

• Alternately, we can also use a physical argument to reach the same conclusion:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

is the pressure gradient supplied by the pump to overcome the viscous shear 
stress at the wall, i.e. the skin friction drag. The shear force at the walls will not 
change with x since the flow is fully developed, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 . So, the pressure gradient 

will be constant, i.e. not change with x. 

τ𝑤𝑤 = µ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑦𝑦=ℎ

τ𝑤𝑤 = µ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑦𝑦=−ℎ

(force on fluid)

Press. decreases in x-direction 
because of viscous shear

< 0



Laminar Flow Between Fixed Parallel Plates

We have: µ 𝑑𝑑
2𝑢𝑢

𝑑𝑑𝑦𝑦2
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• Integrating with respect to y:   𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

= 1
µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑦𝑦 + 𝐶𝐶1

• We can use flow symmetry to evaluate 𝐶𝐶1.  

The flow is symmetrical about 𝑦𝑦 = 0, i.e.,  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑦𝑦=0

= 0 So,   0 = 0 + 𝐶𝐶1

• Gives: 𝐶𝐶1=0

© David Naylor
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�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑦𝑦=0

= 0



Laminar Flow Between Fixed Parallel Plates
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

= 1
µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑦𝑦

• Integrating again with respect to y: 

𝑢𝑢 = 1
2µ

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑦𝑦2 + 𝐶𝐶2

• We use the boundary conditions at either wall (no-slip) to evaluate and 𝐶𝐶2:

At 𝑦𝑦 = ±ℎ 𝑢𝑢 = 0 So,  0 = 1
2µ

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
ℎ2 + 𝐶𝐶2 Thus,  𝐶𝐶2 = − 1

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
ℎ2

© David Naylor

9

𝑢𝑢 ℎ = 0

𝑢𝑢 −ℎ = 0



Laminar Flow Between Fixed Parallel Plates

We have: 𝑢𝑢 = 1
2µ

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑦𝑦2 + 𝐶𝐶2 and  𝐶𝐶2 = − 1

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
ℎ2

• Making the substitution:

𝑢𝑢 = −ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1 − 𝑦𝑦2

ℎ2
,   So,   𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = −ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑢𝑢
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

= 1 −
𝑦𝑦2

ℎ2

• The velocity profile for laminar flow between parallel plates is parabolic. Called Poiseuille flow, 
after French physicist (published ~1840).

© David Naylor
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(Recall 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0)



Laminar Flow Between Fixed Parallel Plates

• We have: 𝑢𝑢 = −ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1 − 𝑦𝑦2

ℎ2

• The volume flow rate is:

𝑄𝑄 = ∫−ℎ
ℎ 𝑢𝑢 𝑑𝑑𝑑𝑑 = −ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ∫−ℎ

ℎ 1 − 𝑦𝑦2

ℎ2
𝑑𝑑𝑑𝑑 = − ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �𝑦𝑦 − 𝑦𝑦3

3ℎ2 𝑦𝑦=−ℎ

𝑦𝑦=ℎ
= −2ℎ3

3µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Noting that: 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = −ℎ2

2µ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, we get, 𝑄𝑄 = 2
3
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 2ℎ = �𝑉𝑉 2ℎ

So,   𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 3
2
�𝑉𝑉 (Be careful: This is a different result than for a round pipe.)
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�𝑉𝑉



Flow Between Fixed Plates with Upper Plate Moving
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Problem Definition
• Consider steady laminar incompressible viscous flow 

between parallel plates a distance ℎ apart. 
• Flow driven by upper plate moving at velocity 𝑉𝑉 . 

No pressure gradient, 𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

= 0. 

• Plates are very wide and long. So, the flow is purely 
axial:  𝑣𝑣 = 𝑤𝑤 = 0.  Neglect gravity effects. 

Continuity Equation:
(incompressible) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 So, the flow is fully developed.  

𝑣𝑣 = 0 𝑤𝑤 = 0



Flow Between Fixed Plates with Upper Plate Moving
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• So, we have 1-D flow. So, we write the Navier-Stokes equation in 
the x-direction.

x-momentum:

ρ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ µ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

+ ρ𝑔𝑔𝑥𝑥

• Again, the non-linear terms are zero. 
• Simplifying: 

𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

= 0

• Again, this is now an ODE, not a PDE, since 𝑢𝑢 = 𝑢𝑢(𝑦𝑦)

steady 𝑤𝑤 = 0𝑣𝑣 = 0
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = 0 𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥 = 00



Flow Between Fixed Plates with Upper Plate Moving
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• So, we have 𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

= 0

• Integrating twice:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶1, 𝑢𝑢 = 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2
• We use the boundary conditions (B.C.) at 𝑦𝑦 = 0 and 𝑦𝑦 = ℎ to get 

the constants.

• Applying the lower B.C.: 𝑢𝑢 0 = 0, 0 = 𝐶𝐶1 0 + 𝐶𝐶2 Thus,  𝐶𝐶2 = 0

• Applying the upper B.C.: 𝑢𝑢 ℎ = 𝑉𝑉 𝑉𝑉 = 𝐶𝐶1ℎ Thus, 𝐶𝐶1 = 𝑉𝑉
ℎ

• The result is: 𝑢𝑢 = 𝑉𝑉 𝑦𝑦
ℎ

• The velocity profile is linear. (We made this assumption without proof in Chapter 1)
• Laminar flow between plates with flow driven by the motion of the upper plate is 

linear is called Couette flow, after another French physicist (1858-1943).

𝑢𝑢 ℎ = 𝑉𝑉

𝑢𝑢 0 = 0



END NOTES
Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014. All rights reserved. 
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Source:  http://prguitarman.tumblr.com/post/52221706891/slow-motion-bubble-pop
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