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Overview

e Derivation of the differential expression for the fluid
acceleration field

u=V B 7 u=Ve=V, <V,
- “Local” versus “convective” acceleration s e i o e
- Vector notation >
i— /'\'2 P i
X, Xg
e Examples
i)  Calculating fluid acceleration in a steady flow in
a nozzle (convective acceleration). Iv
ii) Calculating fluid acceleration field given a /’(x,y, z,t)
velocity vector field, V(x,y, z, t)

This is vital background for an upcoming discussion !
of conservation of linear momentum (F=ma for

fluids) in differential form i.e., for the Navier-Stokes

equations.



The Fluid Acceleration Field

 We have been describing fluid flow with a Eulerian velocity vector field:

V=ulxyzti+ vix,yzt)j+ w(xy,zt)k

X, u
* Thus, the acceleration field is: /Z,W
dV du_ dv dw

a= i+—j+—Kk
-t T
* Note that each velocity component is a function of four variables, e.g. u = u(x, y, z, t).

e So, considering only the x-component, to get the total acceleration we must use the chain rule:

du (x,y,z,t) 0u+0uax+0u0y ou oz
dt 0t 0xdt OJyodt 0zot
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The Fluid Acceleration Field
du(x,y,z,t) Odu Odudx Odu ay ou oz

= + +
dt dt 0dx dt 0y ot 62 ot
e Note that: 9x _ u 9y _ v 0z _ w convective
dat dat dat

acceleration

]

l \
du (x,y,z,t) _ au ou ou
dt - + 6x+v6y+waz

S

local acceleration

Making the substitution, we get:

Local acceleration is caused by local unsteady flow e.g., pump speeding up, Q T in time.

Convective acceleration is caused by fluid moving into a region with different velocity.
e.g. steady flow through a nozzle. 4T

E : Fluid in the nozzle accelerates in a steady flow!

= H
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The Fluid Acceleration Field i

acceleration

* So the acceleration vector field a is:
1

[ |

dV bv GV 7] 4 7] 4 6V>

u—+v—+w—

- Dt dx dy 0z
Not an ordinary / |0ca|
derivative! acceleration
* Most books use the notatlon — to distinguish this from an ordinary derivative (variable that is a
function of only one variable). (The Frank White textbook does not.)

av DV .
. p or — is called the material derivative or the substantial derivative.



The Fluid Acceleration Field uitvj+wk>

VRN

dV_DV_aV_I_( 7) 4 aV OV)

Uaﬁ-vaﬁ'WE

a =

dt ~ Dt ot

* The three scalar components can be written as:

x-direction:
B ou N ou N ou N ou
T T ax T Vay T W az
y-direction:
B v N v N v N v
YT T ax T Vay T Wz
z-direction:
ow ow ow ow
a,=—+u—+v—+w—

ot dx dy 0z
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The Fluid Acceleration Field

e Vector Notation. This is approaching a “graduate level” discussion...

@+v'+®
— Y]\

1'% ( 7) 4 7) 4 0V> av

a= a—+ Uaﬁ-vﬁﬁ'WE = E-F(V'V)V

\ J
|

vector notation (compact)

where symbol "V" is the vector gradient (or del) operator: V = 1— +J— ay + k—

0

e So,V -V becomes an operator: V.-V —u—+v—+wa
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Example 1

Consider a steady one-dimensional flow of liquid in nozzle. The incompressible fluid enters the
nozzle at velocity V5. The nozzle has length L, and inlet diameter D; and outlet diameter D,.

Derive an analytical expression of the fluid acceleration in the nozzle as a function of the x-
coordinate, measured from the nozzle inlet.

\
/T

< >
L
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Example 1 |
Vi D, D,
e Start with general vector expression for fluid acceleration: / T
A 4 . :
—— X
/4 v < >
— ad L
&;K-l_ ( \A\ \az)
0 (steady) 0(1-D) 0 (1-D)
. . )%
e Flow is steady. Pump flow rate is not changing. Thus: Pl 0
e Flowis1-D: v=w =0 Thus: V=uil
. . du
e So, the acceleration equation becomes: Ay = U (ordinary derivative, a, = a,(x) only)

Next, we need an expression for u(x).



Example 1 a, =u

Fluid is incompressible: Q = VA = const - V;A; = u(x)A(x)

2
From continuity, we note that: u(x) = (A/E;)) V, = (DIZ;)) 74

The nozzle diameter varies linearly with x: D(x) = D; — (D1;D2) X

D Vy

(pa-(B2722)x )’

Making the substitution: u(x) =

du_

Al
=

h 4

—2 Df (=(D1—-D2)/L) V4

. . . . DZ V
So, the acceleration in x-direction becomes: a, = u— = [( (Dl_;
p,—(21-P2
L

5

(o))’

10
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Example 1 \ L
D% V. 2 DZ (D1—Dy) V. " . %
« We have the x-acceleration: a, =[ Di_;z 2] 1(01—132) 5 | /T
(0=(F772)% ) [ Lo (ZT2)x ) il
—— X
e Combining terms: 2 D (D, — D,)V? ) L ’
a. =
(o))
1 L
Ans.
m‘*mm—z2 m
* Check units: — =
mm S

Comments:
* a, is positive throughout the nozzle. Min. at nozzle inlet, x = D; & max. at nozzle exit, x = D, .

* This acceleration is purely convective, since the flow is steady. The acceleration occurs because the flow is
convected into a region of higher velocity.

e The fluid acceleration produces a thrust on the nozzle in the negative x-direction, F, = m (V, — V;)



Example 2

Consider a hypothetical fluid velocity vector field given by: t v
/sz ui+vj+wk
V=Ct(x*—y2)i —2Cxytj+3yk
X, U
Z, W

(i) Isthe flow field steady or unsteady?
(ii) Obtain an expression for the acceleration vector a.

(iii) Evaluate the acceleration vectora at (x,y,z,t) = (1,1,1,1)

Solution

(i) The flow is unsteady (or transient) since time (t) appears in the velocity vector (which will give
rise to local acceleration.)



Example 2

(ii) We have:

. du du du
* The x-component of accelerationis: a, = 3¢ + u— + va +w—

e Evaluating terms:

© David Naylor
u v w

V=Ct(x?—vy%)i—2Cxytj+3yk

ou
0z

a, = C(x? —y?) + Ct(x? — y?) (2Cxt) + (—2Cxyt)(—2Cyt) + 3y(0)

a, =C(x?—y?)+2C?x t?(x?> —y?) + 4C?*x y? t*

13



Example 2

We have:

e The y-component:

e Evaluating terms:

© David Naylor
u v w

V=Ct(x?—vy%)i—2Cxytj+3yk

ov ov ov ov
Cly —§+U£+U$+W£

a, = —2Cxy + Ct(x? — y*) (—=2Cyt) + (—2Cxyt)(—2Cxt) + 3y(0)

a, = —2Cxy —2C* yt?(x* —y*) + 4 C*x*yt*

14



Example 2 ) ! N

We have: V=Ct(x?—vy%)i—2Cxytj+3yk

e Th t: —+ Moy
e z-component: a, = ox 1% 3y w 37

e Evaluating terms: a, = 0 + Ct(x? — y?) (0) + (—=2Cxyt)3 + 3y(0), a, = —6 Cxyt
e Simplifying some of the terms, the acceleration vector is:

av
a=—= {C(x? —y2)+2C? x t?(x%? —y?) + 4C%x y? t%}i

+ {=2Cxy — 2C? yt?(x? — y?) + 4 C*x*yt?}j — {6Cxyt} Kk



Example 2

We have:

a=-—-= {C(x* —y?)+2C?x t*(x* — y*) + 4C?x y* t*} i

+ {—2Cxy + —2C?yt*(x* —y?) + 4 C*x*yt*}j — {6Cxyt} Kk

(iii) Evaluating the acceleration vector a at (x,y,z,t) = (1,1,1,1):

av
a=E={4C2}i + {—2C+4C?}j —{6C}Kk

Ans.



END NOTES

Presentation prepared and delivered by Dr. David Naylor.
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