MEC516/BME516: Fluid Mechanics I

Department of Mechanical & Industrial Engineering

Overview

- Derivation of the differential expression for the fluid acceleration field
 - "Local" versus "convective" acceleration
 - Vector notation

$u = V_1$ $u = V_2 > V_1$ x_1 $u = V_3 = V_1 < V_2$ x_3

Examples

- i) Calculating fluid acceleration in a steady flow in a nozzle (convective acceleration).
- ii) Calculating fluid acceleration field given a velocity vector field, V(x, y, z, t)

This is vital background for an upcoming discussion of conservation of linear momentum ($\mathbf{F}=m\mathbf{a}$ for fluids) in differential form i.e., for the *Navier-Stokes* equations.

We have been describing fluid flow with a Eulerian velocity vector field:

$$\mathbf{V} = u(x, y, z, t)\mathbf{i} + v(x, y, z, t)\mathbf{j} + w(x, y, z, t)\mathbf{k}$$

• Thus, the acceleration field is:

$$\mathbf{a} = \frac{d\mathbf{V}}{dt} = \frac{du}{dt}\mathbf{i} + \frac{dv}{dt}\mathbf{j} + \frac{dw}{dt}\mathbf{k}$$

- Note that each velocity component is a function of four variables, e.g. u = u(x, y, z, t).
- So, considering only the x-component, to get the total acceleration we must use the chain rule:

$$\frac{du(x,y,z,t)}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial t}$$

$$\frac{du\left(x,y,z,t\right)}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}$$

Note that:

$$\frac{\partial x}{\partial t} = u \quad \frac{\partial y}{\partial t} = v \quad \frac{\partial z}{\partial t} = w$$

convective acceleration

• Making the substitution, we get:

$$\frac{du(x,y,z,t)}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
local acceleration

• *Local acceleration* is caused by local unsteady flow e.g., pump speeding up, Q ↑ in time.

• Convective acceleration is caused by fluid moving into a region with different velocity.

e.g. steady flow through a nozzle.

• So the acceleration vector field \boldsymbol{a} is:

convective acceleration

- Most books use the notation $\frac{DV}{Dt}$ to distinguish this from an ordinary derivative (variable that is a function of only one variable). (The Frank White textbook does not.)
- $\frac{dV}{dt}$ or $\frac{DV}{Dt}$ is called the *material derivative* or the *substantial derivative*.

• The three scalar components can be written as:

x-direction:

$$a_{x} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$

y-direction:

$$a_{y} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$

z-direction:

$$a_z = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$

Vector Notation. This is approaching a "graduate level" discussion...

vector notation (compact)

where symbol " ∇ " is the *vector gradient* (or *del*) operator: $\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$

• So,
$$\mathbf{V} \cdot \nabla$$
 becomes an operator: $\mathbf{V} \cdot \nabla = u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$

Consider a <u>steady</u> one-dimensional flow of liquid in nozzle. The incompressible fluid enters the nozzle at velocity V_1 . The nozzle has length L, and inlet diameter D_1 and outlet diameter D_2 .

Derive an analytical expression of the fluid acceleration in the nozzle as a function of the x-coordinate, measured from the nozzle inlet.

Start with general vector expression for fluid acceleration:

$$a = \frac{\partial V}{\partial t} + \left(u \frac{\partial V}{\partial x} + v \frac{\partial V}{\partial y} + v \frac{\partial V}{\partial z} \right)$$
0 (steady) 0 (1-D) 0 (1-D)

Next, we need an expression for u(x).

$$a_x = u \frac{du}{dx}$$

- Fluid is incompressible: $Q = VA = const \rightarrow V_1A_1 = u(x)A(x)$
- From continuity, we note that: $u(x) = \left(\frac{A_1}{A(x)}\right)V_1 = \left(\frac{D_1}{D(x)}\right)^2 V_1$
- The nozzle diameter varies linearly with x: $D(x) = D_1 \left(\frac{D_1 D_2}{L}\right)x$
- Making the substitution: $u(x) = \frac{D_1^2 V_1}{\left(D_1 \left(\frac{D_1 D_2}{L}\right)x\right)^2}$
- So, the acceleration in x-direction becomes: $a_{\chi} = u \frac{du}{dx} = \left[\frac{D_1^2 V_1}{\left(D_1 \left(\frac{D_1 D_2}{L}\right)x\right)^2} \right] \frac{-2 D_1^2 \left(-(D_1 D_2)/L\right) V_1}{\left(D_1 \left(\frac{D_1 D_2}{L}\right)x\right)^3}$

• We have the x-acceleration:
$$a_{\chi} = \left[\frac{D_1^2 V_1}{\left(D_1 - \left(\frac{D_1 - D_2}{L}\right)x\right)^2}\right] \frac{2 D_1^2 (D_1 - D_2) V_1}{L\left(D_1 - \left(\frac{D_1 - D_2}{L}\right)x\right)^3}$$

Combining terms:

$$a_{x} = \frac{2 D_{1}^{4} (D_{1} - D_{2}) V_{1}^{2}}{L \left(D_{1} - \left(\frac{D_{1} - D_{2}}{L}\right) x\right)^{5}}$$

Ans.

• Check units:
$$\frac{m^4 m \frac{m^2}{s^2}}{m m^5} = \frac{m^4}{s^2}$$

Comments:

- a_x is positive throughout the nozzle. Min. at nozzle inlet, $x=D_1$ & max. at nozzle exit, $x=D_2$.
- This acceleration is purely convective, since the flow is <u>steady</u>. The acceleration occurs because the flow is convected into a region of higher velocity.
- The fluid acceleration produces a thrust on the nozzle in the negative x-direction, $F_x = \dot{m} (V_2 V_1)$

Consider a hypothetical fluid velocity vector field given by:

$$V = Ct(x^2 - y^2) \mathbf{i} - 2Cxyt \mathbf{j} + 3y \mathbf{k}$$

- Is the flow field steady or unsteady?
- Obtain an expression for the acceleration vector \boldsymbol{a} .
- (iii) Evaluate the acceleration vector \boldsymbol{a} at (x, y, z, t) = (1, 1, 1, 1)

Solution

(i) The flow is unsteady (or transient) since time (t) appears in the velocity vector (which will give rise to local acceleration.)

(ii) We have:

$$\mathbf{v} \qquad \mathbf{w}$$

$$\mathbf{V} = C t(x^2 - y^2) \mathbf{i} - 2Cxyt \mathbf{j} + 3y \mathbf{k}$$

- The x-component of acceleration is: $a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$
- Evaluating terms: $a_x = C(x^2 y^2) + Ct(x^2 y^2)(2Cxt) + (-2Cxyt)(-2Cyt) + 3y(0)$

$$a_x = C(x^2 - y^2) + 2 C^2 x t^2 (x^2 - y^2) + 4C^2 x y^2 t^2$$

We have:

$$\mathbf{V} = C t(x^2 - y^2) \mathbf{i} - 2Cxyt \mathbf{j} + 3y \mathbf{k}$$

• The y-component:

$$a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$

• Evaluating terms:

$$a_{y} = -2Cxy + Ct(x^{2} - y^{2})(-2Cyt) + (-2Cxyt)(-2Cxt) + 3y(0)$$

$$a_y = -2Cxy - 2C^2 yt^2(x^2 - y^2) + 4 C^2 x^2 yt^2$$

We have:

$$\mathbf{v} = \mathbf{v} \mathbf{v}$$

$$\mathbf{V} = \mathbf{v} \mathbf{v}$$

$$\mathbf{V} = \mathbf{v} \mathbf{v}$$

$$\mathbf{v} = \mathbf{v}$$

$$\mathbf{v} \mathbf{v}$$

$$\mathbf{v}$$

• The z-component:

$$a_z = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$

• Evaluating terms: $a_z = 0 + Ct(x^2 - y^2)(0) + (-2Cxyt)3 + 3y(0)$, $a_z = -6Cxyt$

• Simplifying some of the terms, the acceleration vector is:

$$\mathbf{a} = \frac{d\mathbf{V}}{dt} = \{C(x^2 - y^2) + 2C^2 x t^2(x^2 - y^2) + 4C^2 x y^2 t^2\} \mathbf{i}$$
$$+ \{-2Cxy - 2C^2 yt^2(x^2 - y^2) + 4C^2 x^2 yt^2\} \mathbf{j} - \{6Cxyt\} \mathbf{k}$$

We have:

$$\mathbf{a} = \frac{d\mathbf{V}}{dt} = \{C(x^2 - y^2) + 2C^2xt^2(x^2 - y^2) + 4C^2xy^2t^2\}\mathbf{i}$$
$$+ \{-2Cxy + -2C^2yt^2(x^2 - y^2) + 4C^2x^2yt^2\}\mathbf{j} - \{6Cxyt\}\mathbf{k}$$

(iii) Evaluating the acceleration vector \boldsymbol{a} at (x, y, z, t) = (1, 1, 1, 1):

$$a = \frac{dV}{dt} = \{4C^2\} \mathbf{i} + \{-2C + 4C^2\} \mathbf{j} - \{6C\} \mathbf{k}$$

Ans.

Source: http://mattybing1025.tumblr.com

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2015. All rights reserved.