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Overview
• Derivation of the differential equation for 

conservation of mass: The Continuity Equation
- Vector notation
- Simplification for incompressible flow. 
- Cylindrical coordinates

• Example 
- Given a velocity vector field, V(x, y, z, t), 

determine if the continuity equation is satisfied.
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Derivation of the Continuity Equation
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• Derivation in Cartesian coordinates
• Consider a differential control volume with dimensions 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
• Located in a velocity field with arbitrary velocity V (x, y, z, t), and density fields ρ(x, y, z, t)
• Consider x-direction:

Mass flow rate into the c.v.:    ρ 𝑢𝑢 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

Mass flow rate out of c.v.: 

{ ρ 𝑢𝑢 +
𝜕𝜕
𝜕𝜕𝜕𝜕

ρ 𝑢𝑢 𝑑𝑑𝜕𝜕 +
1
2!

𝜕𝜕2

𝜕𝜕𝜕𝜕2
ρ 𝑢𝑢 𝑑𝑑𝜕𝜕 2 + ⋯ } 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

Could be 3D, unsteady &  
compressible

Neglect higher order terms. 
They vanish as dx 0
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ρ𝑢𝑢 𝑑𝑑𝜕𝜕}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑
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• Consider the inflow and outflow on the other faces:

Face Outlet mass flowInlet mass Flow

{ρ 𝑣𝑣 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑣𝑣 𝑑𝑑𝑑𝑑}𝑑𝑑𝜕𝜕𝑑𝑑𝑑𝑑

ρ 𝑣𝑣 𝑑𝑑𝜕𝜕𝑑𝑑𝑑𝑑



Derivation of the Continuity Equation
• The flow through each side can be consider 1-D. Flow at a point as dx, dy, dz 0
• From Chapter 3 (Control Volume Analysis), conservation of mass was expressed as:

𝜕𝜕
𝜕𝜕𝑡𝑡�𝐶𝐶𝑉𝑉

ρ 𝑑𝑑Ɐ = �
𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

ρ𝑖𝑖𝑛𝑛 𝐴𝐴𝑖𝑖𝑛𝑛𝑉𝑉𝑖𝑖𝑛𝑛 −�
𝑜𝑜𝑢𝑢𝑛𝑛

ρ𝑜𝑜𝑢𝑢𝑛𝑛 𝐴𝐴𝑜𝑜𝑢𝑢𝑛𝑛𝑉𝑉𝑜𝑜𝑢𝑢𝑛𝑛

• This is simple mass “accounting”  Rate of Storage = Rate in – Rate out

• For a differential volume  𝑑𝑑Ɐ = 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑, the storage term reduces to: 

𝜕𝜕
𝜕𝜕𝑡𝑡�𝐶𝐶𝑉𝑉

ρ 𝑑𝑑Ɐ =
𝜕𝜕ρ
𝜕𝜕𝑡𝑡 𝑑𝑑Ɐ =

𝜕𝜕ρ
𝜕𝜕𝑡𝑡 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
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𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕ρ
𝜕𝜕𝑡𝑡

𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = �
𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

ρ𝑖𝑖𝑛𝑛 𝐴𝐴𝑖𝑖𝑛𝑛𝑉𝑉𝑖𝑖𝑛𝑛 −�
𝑜𝑜𝑢𝑢𝑛𝑛

ρ𝑜𝑜𝑢𝑢𝑛𝑛 𝐴𝐴𝑜𝑜𝑢𝑢𝑛𝑛𝑉𝑉𝑜𝑜𝑢𝑢𝑛𝑛

𝜕𝜕ρ
𝜕𝜕𝑡𝑡
𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −

𝜕𝜕
𝜕𝜕𝜕𝜕

ρ𝑢𝑢 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑣𝑣 𝑑𝑑𝑑𝑑 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 −
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ 𝑤𝑤 𝑑𝑑𝑑𝑑 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑

𝜕𝜕ρ
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝜕𝜕

ρ𝑢𝑢 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑣𝑣 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑤𝑤 = 0

Face Outlet mass flowInlet mass flow

General Continuity Equation



Derivation of the Continuity Equation
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𝜕𝜕ρ
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝜕𝜕

ρ𝑢𝑢 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑣𝑣 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑤𝑤 = 0

Valid for (i) steady/unsteady flow, (ii) viscous or frictionless flow, (iii) compressible/incompressible flow.

Vector notation, in terms of the velocity vector V:

𝜕𝜕ρ
𝜕𝜕𝑡𝑡

+ 𝛻𝛻 � ρ 𝑽𝑽 = 0

where symbol "𝛻𝛻" is the vector gradient (or del) operator:

𝛻𝛻 = 𝒊𝒊
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒋𝒋
𝜕𝜕
𝜕𝜕𝑑𝑑

+ 𝒌𝒌
𝜕𝜕
𝜕𝜕𝑑𝑑

General Continuity Equation

x, u

𝑑𝑑, 𝑣𝑣

z, w

Note: This is a dot product



Derivation of the Continuity Equation
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𝜕𝜕ρ
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝜕𝜕

ρ𝑢𝑢 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑣𝑣 +
𝜕𝜕
𝜕𝜕𝑑𝑑

ρ𝑤𝑤 = 0

• For incompressible flow ρ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡.  So, 𝜕𝜕ρ
𝜕𝜕𝑛𝑛

= 𝜕𝜕ρ
𝜕𝜕𝑥𝑥

= 𝜕𝜕ρ
𝜕𝜕𝑦𝑦

= 𝜕𝜕ρ
𝜕𝜕𝑧𝑧

= 0.  
Continuity becomes:

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑑𝑑

= 0

Valid for steady or unsteady incompressible flow.  In vector notation:

𝛻𝛻 � 𝑽𝑽 = 0

• The scalar product of the del operator and a vector is called the Divergence.  
• For incompressible flows the divergence of the velocity vector field is zero. 

x, u

𝑑𝑑, 𝑣𝑣

z, w

(Mach Number 𝑀𝑀𝑀𝑀 = 𝑉𝑉
𝑐𝑐
≤ ~0.3)



ρ 𝑣𝑣𝑟𝑟 𝑟𝑟𝑑𝑑θ 𝑑𝑑𝑑𝑑

{ρ 𝑣𝑣𝑟𝑟 +
𝜕𝜕
𝜕𝜕𝑟𝑟

ρ 𝑣𝑣𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟}𝑑𝑑θ 𝑑𝑑𝑑𝑑
Derivation of the Continuity Equation

• For analyzing flow in pipes (and other “round” geometries) 
it is often convenient to use a cylindrical coordinate system.

• Velocity field: 𝑉𝑉(𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡)

𝑽𝑽 = 𝑣𝑣𝑟𝑟 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐢𝐢 + 𝑣𝑣𝑧𝑧 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐣𝐣 + 𝑣𝑣θ 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐤𝐤

© David Naylor
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(arc length)



Derivation of the Continuity Equation

• The Continuity equation in cylindrical coordinates:

𝜕𝜕ρ
𝜕𝜕𝑡𝑡 +

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 𝑟𝑟ρ𝑣𝑣𝑟𝑟 +

1
𝑟𝑟
𝜕𝜕
𝜕𝜕θ ρ𝑣𝑣θ +

𝜕𝜕
𝜕𝜕𝑑𝑑 ρ𝑣𝑣𝑧𝑧 = 0

𝑤𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤 𝑽𝑽 = 𝑣𝑣𝑟𝑟 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐢𝐢 + 𝑣𝑣𝑧𝑧 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐣𝐣 + 𝑣𝑣θ 𝑟𝑟, 𝑑𝑑, θ, 𝑡𝑡 𝐤𝐤
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Example
An engineer claims to have found a solution for a particular incompressible flow. In Cartesian 
coordinates, the proposed solution is:

𝑽𝑽 = (4x + 2y + 3z) 𝐢𝐢 + (2x − 3y + 3z) 𝐣𝐣 + (3x + 2y + 2z) 𝐤𝐤

Determine:
(a) Is the flow steady or unsteady?
(b) Does this velocity field satisfy conservation of mass?

Ans. (a): Flow is steady, because time does not appear in any of the velocity components.
𝑢𝑢 ≠ 𝑢𝑢 𝑡𝑡 , 𝑣𝑣 ≠ 𝑣𝑣 𝑡𝑡 , 𝑤𝑤 ≠ 𝑤𝑤(𝑡𝑡)

© David Naylor
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x, u

𝑑𝑑, 𝑣𝑣

z, w

u 𝑣𝑣 w



Example
We have: 𝑽𝑽 = (4x + 2y + 3z) 𝐢𝐢 + (2x − 3y + 3z) 𝐣𝐣 + (3x + 2y + 2z) 𝐤𝐤

General continuity equation: 𝜕𝜕ρ
𝜕𝜕𝑛𝑛

+ 𝜕𝜕
𝜕𝜕𝑥𝑥

ρ𝑢𝑢 + 𝜕𝜕
𝜕𝜕𝑦𝑦

ρ𝑣𝑣 + 𝜕𝜕
𝜕𝜕𝑧𝑧

ρ𝑤𝑤 = 0

• For incompressible steady: 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 0

• Evaluate the derivatives: 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= 4 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= −3 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 2

• Applying the continuity equations:      4 − 3 + 2 = 3 ≠ 0

Ans. (b): Thus, this flow is not possible. It does not conserve mass.

© David Naylor
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steady, incompressible (either)

u 𝑣𝑣 w



END NOTES
Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2014. All rights reserved. 
13

© David Naylor

Computation Fluid Dynamics simulations of flow in the earth’s oceans.
Source: http://the-science-llama.tumblr.com/post/31734297332/infinity-imagined-fluid-dynamics-of-earths
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