MEC516/BME516: Fluid Mechanics

Chapter 4: Differential Relations for Fluid Flow Part 2

Overview

- Derivation of the differential equation for conservation of mass: The Continuity Equation
- Vector notation
- Simplification for incompressible flow.
- Cylindrical coordinates
- Example
- Given a velocity vector field, $V(x, y, z, t)$, determine if the continuity equation is satisfied.

Derivation of the Continuity Equation

- Derivation in Cartesian coordinates
- Consider a differential control volume with dimensions $d x d y d z$
- Located in a velocity field with arbitrary velocity $\boldsymbol{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$, and density fields $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$
- Consider x-direction:

$$
{ }^{y} \quad \text { Control volume }
$$

Mass flow rate into the c.v.: $\quad \rho u d y d z$

Mass flow rate out of c.v.:

$$
\left\{\rho u+\frac{\partial}{\partial x}(\rho u) d x+\frac{1}{2!} \frac{\partial^{2}}{\partial x^{2}}(\rho u)(d x)^{2}+\cdots\right\} d y d z
$$

Derivation of the Continuity Equation

- Consider the inflow and outflow on the other faces:

Face	Inlet mass Flow	Outlet mass flow
x	$\rho u d y d z$	$\left[\rho u+\frac{\partial}{\partial x}(\rho u) d x\right] d y d z$
y	$\rho v d x d z$	$\left[\rho v+\frac{\partial}{\partial y}(\rho v) d y\right] d x d z$
z	$\rho w d x d y$	$\left[\rho w+\frac{\partial}{\partial z}(\rho w) d z\right] d x d y$

Derivation of the Continuity Equation

- The flow through each side can be consider 1-D. Flow at a point as $d x, d y, d z \rightarrow 0$
- From Chapter 3 (Control Volume Analysis), conservation of mass was expressed as:

$$
\frac{\partial}{\partial t} \int_{C V} \rho d V=\sum_{\text {inlets }} \rho_{\text {in }} A_{\text {in }} V_{\text {in }}-\sum_{\text {out }} \rho_{\text {out }} A_{\text {out }} V_{\text {out }}
$$

- This is simple mass "accounting" \rightarrow Rate of Storage = Rate in - Rate out
- For a differential volume $d \forall=d x d y d z$, the storage term reduces to:

$$
\frac{\partial}{\partial t} \int_{C V} \rho d \forall=\frac{\partial \rho}{\partial t} d \forall=\frac{\partial \rho}{\partial t} d x d y d z
$$

Derivation of the Continuity Equation

Face	Inlet mass flow	Outlet mass flow
x	$\rho u d y d z$	$\left[\rho u+\frac{\partial}{\partial x}(\rho u) d x\right] d y d z$
y	$\rho v d x d z$	$\left[\rho v+\frac{\partial}{\partial y}(\rho v) d y\right] d x d z$
z	$\rho w d x d y$	$\left[\rho w+\frac{\partial}{\partial z}(\rho w) d z\right] d x d y$

$$
\frac{\partial \rho}{\partial t} d x d y d z=\sum_{\text {inlets }} \rho_{\text {in }} A_{\text {in }} V_{\text {in }}-\sum_{\text {out }} \rho_{\text {out }} A_{\text {out }} V_{\text {out }}
$$

$$
\frac{\partial \rho}{\partial t} d x d y d z=-\left\{\frac{\partial}{\partial x}(\rho u) d x\right\} d y d z-\left\{\frac{\partial}{\partial y}(\rho v) d y\right\} d x d z-\left\{\frac{\partial}{\partial z}(\rho w) d z\right\} d x d y
$$

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0
$$

Derivation of the Continuity Equation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0
$$

General Continuity Equation

Valid for (i) steady/unsteady flow, (ii) viscous or frictionless flow, (iii) compressible/incompressible flow.

Vector notation, in terms of the velocity vector \mathbf{V} :

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{V})=0
$$

where symbol " ∇ " is the vector gradient (or del) operator:

$$
\nabla=\boldsymbol{i} \frac{\partial}{\partial x}+\boldsymbol{j} \frac{\partial}{\partial y}+\boldsymbol{k} \frac{\partial}{\partial z}
$$

Derivation of the Continuity Equation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0
$$

- For incompressible flow $\rho=$ const. So, $\frac{\partial \rho}{\partial t}=\frac{\partial \rho}{\partial x}=\frac{\partial \rho}{\partial y}=\frac{\partial \rho}{\partial z}=0$.

Continuity becomes:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \quad\left(\text { Mach Number } M a=\frac{v}{c} \leq \sim 0.3\right)
$$

Valid for steady or unsteady incompressible flow. In vector notation:

$$
\nabla \cdot V=0
$$

- The scalar product of the del operator and a vector is called the Divergence.
- For incompressible flows the divergence of the velocity vector field is zero.

Derivation of the Continuity Equation

- For analyzing flow in pipes (and other "round" geometries) it is often convenient to use a cylindrical coordinate system.
- Velocity field: $V(r, z, \theta, t)$

$$
\boldsymbol{V}=v_{r}(r, z, \theta, t) \mathbf{i}+v_{z}(r, z, \theta, t) \mathbf{j}+v_{\theta}(r, z, \theta, t) \mathbf{k}
$$

Derivation of the Continuity Equation

- The Continuity equation in cylindrical coordinates:

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

$$
\text { where } \boldsymbol{V}=v_{r}(r, z, \theta, t) \mathbf{i}+v_{z}(r, z, \theta, t) \mathbf{j}+v_{\theta}(r, z, \theta, t) \mathbf{k}
$$

Example

An engineer claims to have found a solution for a particular incompressible flow. In Cartesian coordinates, the proposed solution is:

$$
\boldsymbol{V}=(\underbrace{4 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z})}_{\mathrm{u}} \mathbf{i}+(\underbrace{2 \mathrm{x}-3 \mathrm{y}+3 \mathrm{z})}_{v} \mathbf{j}+\underbrace{(3 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}) \mathbf{k}}_{\mathrm{w}} \mathbf{\underbrace { } _ { \mathrm { W } }}
$$

Determine:
(a) Is the flow steady or unsteady?
(b) Does this velocity field satisfy conservation of mass?

Ans. (a): Flow is steady, because time does not appear in any of the velocity components.

$$
u \neq u(t), v \neq v(t), w \neq w(t)
$$

Example

We have:

$$
\boldsymbol{V}=(4 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}) \mathbf{i}+(2 \mathrm{x}-3 \mathrm{y}+3 \mathrm{z}) \mathbf{j}+(3 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}) \mathbf{k}
$$

General continuity equation:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0 \\
& \text { steady, incompressible (either) }
\end{aligned}
$$

- For incompressible steady:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
$$

- Evaluate the derivatives:

$$
\frac{\partial u}{\partial x}=4 \quad \frac{\partial v}{\partial y}=-3 \quad \frac{\partial w}{\partial z}=2
$$

- Applying the continuity equations: $4-3+2=3 \neq 0$

Ans. (b): Thus, this flow is not possible. It does not conserve mass.

Computation Fluid Dynamics simulations of flow in the earth's oceans.
Source: http://the-science-Ilama.tumblr.com/post/31734297332/infinity-imagined-fluid-dynamics-of-earths

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2014. All rights reserved.

