MEC516/BME516: Fluid Mechanics

Chapter 3: Control Volume Analysis Part 6.1: Example Problem

Example: Linear Momentum (Makeup Final Exam 2017)

Water ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$) enters a valve at a mass flow rate of $24 \mathrm{~kg} / \mathrm{s}$. A globe valve reduces the pressure from 53 kPa (gauge) at the inlet to 35 kPa (gauge) at the outlet. The weight of the valve, pipe elbow, and the water from (1) to (2) is 850 N .
Calculate the forces in the x-direction $\left(R_{x}\right)$ and y-direction $\left(R_{Y}\right)$ required to hold this valve and piping system in place.

An Aside: What is a Globe Valve?

- Used for flow control in industrial piping systems
- Hand wheel or pneumatic actuator for remote flow adjustment from control room

Example: Linear Momentum

Free Body Diagram

- Draw the isolated section. Work in symbols!
- All forces applied to C.V.:
- Unknown reaction forces ($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$)
- Weight(s)
- Pressure forces, acting inward \& normal to surface
- Use gauge pressures. (Why?)

- Conservation of linear momentum. Steady flow, control volume with one inlet and one outlet:

Continuity $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$

$$
\begin{gathered}
\qquad \boldsymbol{F}=\dot{m}_{2} V_{2}-\dot{m}_{1} \boldsymbol{V}_{1}=\dot{m}\left(V_{2}-V_{1}\right) \\
\begin{array}{c}
\text { All forces } \\
\text { on C.V. }
\end{array} \quad \begin{array}{c}
\text { Rate of momentum: } \\
\text { outflow - inflow }
\end{array}
\end{gathered}
$$

Example: Linear Momentum

- Vector equation: $\quad \sum \boldsymbol{F}=\dot{m}\left(\boldsymbol{V}_{2}-\boldsymbol{V}_{1}\right)$

$$
\boldsymbol{F}=F_{x} \boldsymbol{i}+F_{y} \boldsymbol{j} \quad \boldsymbol{V}=u \boldsymbol{i}+v \boldsymbol{j}
$$

$\underline{\text { x-direction: }} \stackrel{+}{\rightarrow}$

$$
\begin{aligned}
& \sum F_{x}=\dot{m}\left(u_{2}-u_{1}\right) \\
& u_{2}=0 \text { (nox-component at outlet) }
\end{aligned}
$$

$$
p_{1} A_{1}+R_{x}=\dot{m}\left(u_{2}-u_{1}\right)
$$

Solve for $R_{x}: \quad R_{x}=-p_{1} A_{1}-\dot{m} u_{1}$

- Force directions make sense?

Example: Linear Momentum

$$
R_{x}=-p_{1} A_{1}-\dot{m} u_{1}
$$

- Calculations:

$$
\begin{aligned}
& A_{1}=\frac{\pi D_{1}^{2}}{4}=\frac{\pi(0.08 m)^{2}}{4}=5.03 \times 10^{-3} \mathrm{~m}^{2} \\
& \dot{m}=\rho A_{1} u_{1} \quad u_{1}=\frac{\dot{m}}{\rho A_{1}}
\end{aligned}
$$

$$
u_{1}=\frac{24 \mathrm{~kg} / \mathrm{s}}{998 \mathrm{~kg} / \mathrm{m}^{3}\left(5.03 \times 10^{-3} \mathrm{~m}^{2}\right)}=4.78 \mathrm{~m} / \mathrm{s}
$$

$$
R_{x}=-53 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(5.03 \times 10^{-3} \mathrm{~m}^{2}\right)-24 \frac{\mathrm{~kg}}{\mathrm{~s}}\left(4.78 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=-266.4-114.8 \mathrm{~N}=-381 \mathrm{~N}
$$

$$
R_{x}=381 N \leftarrow \text { Ans }
$$

Example: Linear Momentum

Vector equation: $\quad \sum \boldsymbol{F}=\dot{m}\left(\boldsymbol{V}_{2}-\boldsymbol{V}_{1}\right)$ y-direction: ${ }^{+} \uparrow$

$$
\begin{gathered}
\sum F_{y}=\dot{m}\left(v_{2}-v_{1}\right) \\
v_{1}=0 \text { (no y-component at inlet) } \\
-p_{2} A_{2}-W+R_{y}=\dot{m}\left(v_{2}-\not v_{1}\right)
\end{gathered}
$$

Solve for $\mathrm{R}_{\mathrm{y}}: R_{y}=p_{2} A_{2}+W+\dot{m} v_{2}$

- Force directions make sense?

Example: Linear Momentum

$$
R_{y}=p_{2} A_{2}+W+\dot{m} v_{2}
$$

Calculations:

$$
\begin{aligned}
& A_{2}=\frac{\pi D_{2}^{2}}{4}=\frac{\pi(0.04 \mathrm{~m})^{2}}{4}=1.26 \times 10^{-3} \mathrm{~m}^{2} \\
& \dot{m}=\rho A_{2} v_{2} \quad v_{2}=\frac{\dot{m}}{\rho A_{2}} \\
& v_{2}=\frac{24 \mathrm{~kg} / \mathrm{s}}{998 \mathrm{~kg} / \mathrm{m}^{3}\left(1.26 \times 10^{-3} \mathrm{~m}^{2}\right)}=19.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
R_{y}=35 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(1.26 \times 10^{-3} \mathrm{~m}^{2}\right)+850 \mathrm{~N}+24 \frac{\mathrm{~kg}}{\mathrm{~s}}\left(19.1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=+1350 \mathrm{~N}
$$

$$
R_{y}=1350 N \uparrow \text { Ans. }
$$

Example: Linear Momentum

- R_{x} and R_{y} act at the pipe flanges
- R_{x} and R_{y} are the net forces required to hold valve and pipe in place
- Linear momentum analysis can only determine total force in each direction:

$$
\begin{aligned}
& R_{x}=R_{x 1}+R_{x 2}=-381 \mathrm{~N} \\
& R_{y}=R_{y 1}+R_{y 2}=1350 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
R_{x}=381 \mathrm{~N} \leftarrow \\
R_{y}=1350 \mathrm{~N} \uparrow
\end{gathered}
$$

Streamlines/Streaklines over a Car
Source: http://6speedhaven.tumblr.com/post/25448453293

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2018. All rights reserved.

