MEC516/BME516: Fluid Mechanics 1

Chapter 3: Control Volume Analysis Part 5

Overview

- Conservation of Momentum for a Control Volume
- use RTT to derive the "Linear Momentum Equation"
- Numerical Example
- Calculating fluid forces on a vane. Has applications to rotation machinery, e.g. Pelton Wheel Turbine

http://commons.wikimedia.org/wiki/
File:Pelton_wheel_turbine_in_Barcelona.jpg

Derivation of the Linear Momentum Equation

- Newton's second law, $\Sigma \boldsymbol{F}=m \boldsymbol{a}=\frac{d}{d t}(m \boldsymbol{V})_{s y s}$

Sum of external forces = Rate of change of linear momentum of the system

- Note: Typeset Bold variables are vectors (textbook notation), HAND Wenten \vec{V}
- For a non-accelerating control volume, with 1-D flow normal to the control surface boundaries, RTT gives:

$$
\frac{d}{d t}\left(B_{S Y S}\right)=\frac{d}{d t} \int_{C V} \beta d m+\sum_{\text {outlets }} \beta_{o} \dot{m}_{o}-\sum_{\text {inlets }} \beta_{i} \dot{m}_{i}
$$

(relates the system to the c.v.)

- The quantity of interest is $\boldsymbol{B}=m \boldsymbol{V}$, linear momentum. So,

$$
\beta=\frac{d \boldsymbol{B}}{d m}=\boldsymbol{V}
$$

Derivation of the Linear Momentum Equation

So, we get: $\quad \frac{d}{d t}(m \boldsymbol{V})_{s y s}=\frac{d}{d t} \int_{C V} \boldsymbol{V} d m+\sum_{\text {outlets }} \boldsymbol{V}_{o} \dot{m}_{o}-\sum_{\text {inlets }} \boldsymbol{V}_{i} \dot{m}_{i}$

- Now, applying Newton's second law to the system:

$$
\begin{gathered}
\sum F=\frac{d}{d t}(m \boldsymbol{V})_{\text {sys }} \\
\sum F=\frac{d}{d t} \int_{C V} \boldsymbol{V} d m+\sum_{\text {outlets }} \boldsymbol{V}_{o} \dot{m}_{o}-\sum_{\text {inlets }} \boldsymbol{V}_{i} \dot{m}_{i}
\end{gathered}
$$

In this course we will be dealing mostly with steady flows:

$$
\sum F=\sum_{\text {outlets }} \dot{m}_{o} V_{o}-\sum_{\text {inlets }} \dot{m}_{i} V_{i}
$$

Linear Momentum Equation

For steady 1-D flows (in a non-accelerating reference frame):

$$
\sum F=\sum_{\text {outlets }} \dot{m}_{o} \boldsymbol{V}_{o}-\sum_{\text {inlets }} \dot{m}_{i} \boldsymbol{V}_{i}
$$

Important Notes:

- \boldsymbol{V} is a vector quantity.
- $\Sigma \boldsymbol{F}$ is the vector sum of all forces acting on the system, including
- all forces at the control surfaces: pressure and viscous forces on the fluid \& forces in solids cut by the c.s.
- weight of fluid (or solid) contained in the system
- For a moving control volume, \boldsymbol{V} is the relative velocity, i.e., $\boldsymbol{V}=\boldsymbol{V}_{\boldsymbol{r}}$.

Example: Fluid forces on a stationary vane

A horizontal jet of water (at $50^{\circ} \mathrm{F}$) exits a nozzle with a steady uniform velocity of $10 \mathrm{ft} / \mathrm{s}$. The outlet area of the nozzle is $0.06 \mathrm{ft}^{2}$. A stationary vane redirects the jet upward, through an angle of $\theta=30^{\circ}$. Gravity and viscous forces are assumed to be negligible.
Calculate the force required to hold the vane stationary.
(What is your intuition?)

Example

- Control volume cuts through fluid \& solid support.
- Free body diagram with the support reaction forces, R_{x} and R_{y}.
- The pressure at section (1) and (2) are the same, atmospheric pressure.
- With negligible gravity and viscous effect, and since $p_{1}=p_{2}$, the speed of the jet
 remains constant.

$$
\left|\boldsymbol{V}_{1}\right|=\left|\boldsymbol{V}_{2}\right|=V=10 \mathrm{ft} / \mathrm{s} \text {, also } \dot{m}_{1}=\dot{m}_{2}=\dot{m}=\rho A V
$$

- For steady flow, the linear momentum equation with one inlet (1) and one outlet (2) is:

$$
\sum \boldsymbol{F}=\dot{m}_{2} \boldsymbol{V}_{2}-\dot{m}_{1} \boldsymbol{V}_{1}=\dot{m} \boldsymbol{V}_{2}-\dot{m} \boldsymbol{V}_{1}
$$

Example

- Keeping in mind the vector nature of the forces and velocities, we get:

$$
\begin{aligned}
& \boldsymbol{V}_{1}=u_{1} \boldsymbol{i}+v_{1} \boldsymbol{j} ; u_{1}=V=10 \frac{f t}{s}, v_{1}=0 \\
& \boldsymbol{V}_{2}=u_{2} \boldsymbol{i}+v_{2} \boldsymbol{j} ; u_{2}=V \cos \theta, v_{2}=V \sin \theta
\end{aligned}
$$

So,

$$
\begin{gathered}
\Sigma F_{x}=R_{x}=\dot{m}\left(u_{2}-u_{1}\right)=\dot{m}(V \cos \theta-V)=\dot{m} V(\cos \theta-1) \\
\Sigma F_{y}=R_{y}=\dot{m}\left(v_{2}-v_{1}\right)=\dot{m} V \sin \theta
\end{gathered}
$$

Example

Liquid water (at $50^{\circ} \mathrm{F}$), $\rho=1.94 \frac{\mathrm{slugs}}{f t^{3}}$
$\dot{m}=\rho A_{1} V=1.94 \frac{\text { slugs }}{f t^{3}}\left(0.06 f t^{2}\right)\left(10 \frac{f t}{s}\right)$
$=1.164$ slugs $/ \mathrm{s}$

$R_{x}=\dot{m} V(\cos \theta-1)=1.164 \frac{\text { slugs }}{s}\left(10 \frac{f t}{s}\right)\left(\cos 30^{\circ}-1\right)=-1.559 \mathrm{lb} \quad\left(\mathrm{R}_{\mathrm{x}}=+1.559 \mathrm{lb} \leftarrow\right)$
$R_{y}=\dot{m} V \sin \theta=1.164 \frac{\text { slugs }}{s}\left(10 \frac{\mathrm{ft}}{\mathrm{s}}\right) \sin 30^{\circ}=5.820 \mathrm{lb} \uparrow$

Magnitude of Total Reaction: $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$

Example

Total Reaction $R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\left(1.56^{2}+5.82^{2}\right)^{1 / 2}$
$R=6.02 l b \quad \alpha=\tan ^{-1} \frac{R_{y}}{R_{x}}=75.0^{\circ}$
Ans.

How a Dog Drinks
Source: http://thesirens-oftitan.tumblr.com/post/80516755506/this-high-speed-footage-shows-how-a-dog-drinks

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2014. All rights reserved.

