MEC516/BME516: Fluid Mechanics 1

Chapter 3: Control Volume Analysis Part 4

Overview

- Conservation of Mass for a Control Volume
- using RTT to derive the "Continuity Equation"
- Numerical Example

Conservation of Mass (Continuity Equation)

- For 1-D flow, Reynolds Transport Theorem (RTT) for arbitrary extensive property B is:

$$
\frac{d}{d t}\left(B_{S Y S}\right)=\frac{d}{d t} \int_{C V}^{1} \beta^{1} \rho d V+\sum_{\text {outlets }} \beta_{o}^{1} \dot{m}_{o}^{1}-\sum_{\text {inlets }} \beta_{i}^{1} \dot{m}_{i}
$$

where $\beta=\frac{d B}{d m} \quad \beta$ is the intensive property (i.e., property per unit mass)

- Considering conservation of mass, we set $B=m$.

Thus, $\beta=\frac{d m}{d m}=1$.

- Principle of conservation of mass simply states:

$$
\frac{d}{d t}\left(B_{S Y S}\right)=0 \quad \text { The mass of the system is constant }!
$$

Conservation of Mass (Continuity Equation)

- Conservation of mass for 1-D flow becomes:

$$
0=\frac{d}{d t} \int_{C V} \rho d V+\sum_{\text {outlets }} \dot{m}_{o}-\sum_{\text {inlets }} \dot{m}_{i}
$$

- Re-arranging, and noting that $\dot{m}=\rho A V$:

- This is very simple "mass" accounting. (Try replacing $\dot{m} \equiv \$$.)

Conservation of Mass (Continuity Equation)

- For 1-D steady flow, $\frac{d}{d t}\left(m_{c v}\right)=0$
- So, conservation of mass becomes:

$$
\sum_{o u t l e t s} \dot{m}_{o}=\sum_{\text {inlets }} \dot{m}_{i} \quad O R \quad \sum_{\text {inlets }} \rho_{\text {in }} A_{\text {in }} V_{\text {in }}=\sum_{\text {out }} \rho_{o u t} A_{o u t} V_{o u t}
$$

- We will use this equation extensively.
- For the example, consider 1-D steady flow for the CV in the diagram:

$$
\rho_{1} A_{1} V_{1}+\rho_{2} A_{2} V_{2}=\rho_{3} A_{3} V_{3}
$$

If the flow is incompressible ($\rho=$ constant):

$A_{1} V_{1}+A_{2} V_{2}=A_{3} V_{3} \quad O R \quad Q_{1}+Q_{2}=Q_{3} \quad$ (volume flow rates)

Calculating Average Velocities

- So far we have considered 1-D flows.
- Often the velocity across the sectional area A is not uniform.
- In this case, we use the average velocity \bar{V} in the 1-D continuity equation.
- We calculate the average by equating the \dot{m} for the 1-D flow to the \dot{m} non-uniform flow:

$$
\begin{aligned}
& \rho A \bar{V}=\int_{A} \rho V d A \\
& \bar{V}=\frac{\int_{A} \rho V d A}{\rho A}
\end{aligned}
$$

- See solved Example 3.4 in textbook.

An Aside: Laminar and Turbulent Velocity Profiles in a Pipe

- Jumping ahead... details in Chapter 6.
- Consider two fully developed flows with the same average velocity, \bar{V}

Laminar flow ($\mathrm{Re}<2,300$)

- smooth streamlines, no lateral mixing
- parabolic profile
- For round pipe: $\bar{V}=u_{\max } / 2$

(a)

Fully Turbulent Flow (Re>10,000)

- random eddies in the flow, mixing.
- much more uniform velocity profile (1-D flow is a better approx.)

(b)

Example

Water at $20^{\circ} \mathrm{C}$ is pumped steadily through a fire hose with a round nozzle. The mean jet velocity at the nozzle exit is $35 \mathrm{~m} / \mathrm{s}$. The exit of the nozzle has a diameter of 45 mm .

Calculate the flow rate Q generated by the pump in $\mathrm{m}^{3} / \mathrm{s}$.

Solution

Continuity equation:
$\frac{d}{d t} \int_{\not \subset V} \rho d \mathrm{~V}=\sum_{\text {inlets }} \rho_{\text {in }} A_{\text {in }} V_{\text {in }}-\sum_{\text {out }} \rho_{\text {out }} A_{\text {out }} V_{\text {out }}$
$\quad 0$ (steady flow)
Section (1) (pump discharge)

No storage of mass in the control volume. Only one inlet at section (1) and one outlet at section (2). So,

$$
\dot{m}_{1}=\dot{m}_{2} \quad \rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2} \quad \rho_{1} Q_{1}=\rho_{2} Q_{2}
$$

Liquid water is incompressible, so: $\rho_{1}=\rho_{2}$
Thus, $Q_{1}=Q_{2}=A_{2} V_{2}$

Solution

Section (1) (pump discharge)

$$
\begin{aligned}
& A_{2}=\frac{\pi D_{2}^{2}}{4}=\frac{\pi(0.045 \mathrm{~m})^{2}}{4}=1.59 \times 10^{-3} \mathrm{~m}^{2} \\
& Q=A_{2} V_{2}=\left(1.59 \times 10^{-3} \mathrm{~m}^{2}\right)\left(35 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=5.57 \times 10^{-2} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad\left(55.7 \frac{\text { litres }}{\mathrm{s}}\right)
\end{aligned}
$$

$$
\left(1 \text { litre }=10^{-3} \mathrm{~m}^{3}\right)
$$

END NOTES

Presentation prepared and delivered by Dr. David Naylor.
© David Naylor 2014. All rights reserved.

