MEC516/BME516: Fluid Mechanics I

Chapter 3: Control Volume Analysis

Part 1.1 Introduction

Department of Mechanical & Industrial Engineering

© David Naylor, 2021

Overview

Basic definitions/terminology for Chapter 3:

Part 1.1

- 3-D Vector Representation for Velocity Field
- Simplifications: 1-D and 2-D Flows
- Compressible versus Incompressible Flow

Part 1.2

- Flow Visualization
 - Streamlines
 - Streaklines
 - Pathlines

Fluid flow over a cyclist, obtained by computational fluid dynamics (CFD) software, Fluent.

Photo credit: http://gallery.ensight.com

Velocity Field

• Vector field representation of the flow

• The velocity vector field in Cartesian co-ords:

 $\mathbf{V} = \mathbf{i} u(x, y, z, t) + \mathbf{j} v(x, y, z, t) + \mathbf{k} w(x, y, z, t)$

where *u*, *v* and *w* are the velocities in the x, y, and z directions

- If *V* depends on time, the flow is *transient* or *unsteady*
- If V has no time dependence, the flow is *steady*

Three-Dimensional Flow

- Most real flows are three dimensional. Velocity varies in spatial 3 co-ordinates
- Velocity vector: $\mathbf{V} = \mathbf{i} u(x, y, z, t) + \mathbf{j} v(x, y, z, t) + \mathbf{k} w(x, y, z, t)$

3-D

3-D flow over an airfoil showing a wing tip vortex

Two-Dimensional Flow

- 2-D Velocity vector field: $\mathbf{V} = \mathbf{i} u(x, y, t) + \mathbf{j} v(x, y, t)$ (w = 0)
- In the centre portion of the wing, the flow may be approximated as two-dimensional

2-D

Top view of flow over an airfoil, showing the wing tip vortices.

One-Dimensional Flow

- Velocity vector field: $V = \mathbf{i} u(x)$ (v = w = 0)
- It is often useful to approximate a flow as one-dimensional
- 1-D approximation is commonly used in pipe flow, shown below
- Will use this approximation in Chapter 3 (e.g. the Bernoulli Equation)

Actual 2-D Flow

1-D Approximation of the Flow

Compressible and Incompressible Flow

- Liquids are generally considered incompressible, i.e. density (ρ) is constant
- Low speed gas flow can also be approximated as incompressible
- Rule of thumb: Gas flows will be compressible for Mach number, Ma > 0.3

Mach Number: $Ma = \frac{V}{c}$ V is the gas speed, c is the speed of sound in the gas

Speed of sound $c = \sqrt{kRT}$

 $c \approx 340$ m/s for air at room conditions

The photo of supersonic bullet was taken by physicist Ernst Mach 1888! This is a compressible flow -- air density is not constant Mach is famous for studying shock waves

Photo Credit: Album of Fluid Motion

Credit: https://www.tumblr.com/tagged/fluid-dynamics

Credit: https://youtu.be/GWqAUQQ1Hqk

END NOTES

Presentation prepared and delivered by Dr. David Naylor

© David Naylor 2021. All rights reserved