MEC516/BME516: Fluid Mechanics I

Chapter 3: Control Volume Analysis

Demo: The Bernoulli Effect

Department of Mechanical & Industrial Engineering

© David Naylor, 2015

Overview

- Video Demonstration
- Recall, on a streamline:

pressure energy per unit mass
$$\frac{V^2}{2} + \frac{p}{\rho} + gz = const$$
 kinetic energy potential energy per unit mass per unit mass

- Local fluid velocity **V** is tangent to streamlines.
- no flow crosses a streamline

Top view of two empty pop cans

Top View of Empty Pop Cans

Top View of Empty Pop Cans

Write the Bernoulli Equation on any streamline, from point 1 to point 2:

$$\frac{1}{2}V_1^2 + \frac{p_1}{\rho} + gz_1 = \frac{1}{2}V_2^2 + \frac{p_2}{\rho} + gz_2$$

Top View of Empty Pop Cans

The Bernoulli Equation: $\frac{1}{2}V_1^2 + \frac{p_1}{\rho} = \left(\frac{1}{2}V_2^2\right) + \left(\frac{p_2}{\rho}\right)$

By continuity $V_1A_1 = V_2A_2$

We can see that $A_2 < A_1$ Thus, $V_2 > V_1$

 $p_{1} \approx p_{atm}$ $p_{2} < p_{atm}$

Flow has more kinetic energy at 2 than at 1

So, the pressure energy at 2 must be lower than at 1. Thus, $p_2 < p_1$

Consider the radial pressure distribution around one can

© David Naylor

END NOTES

Presentation prepared and delivered by Dr. David Naylor.

© David Naylor 2015. All rights reserved.