MEC516/BME516:

 Fluid Mechanics
Chapter 2: Fluid Statics

RYERSON

UNIVERSITY
Department of Mechanical
\& Industrial Engineering

The Buoyancy Force

- Fundamental physics of buoyancy
- Archimedes' principle

- Example problem
- Stability of floating objects

Buoyancy

Net upward pressure force, F_{B}

- Fundamentally, what is the cause of the upward buoyancy force on an submerged object?

- Key Concept: Buoyancy is the net result of the hydrostatic pressure distribution

Hydrostatic pressure distribution on ball
Buoyancy Force: $F_{B}=\int_{A} p d A$

Luckily we don't have to solve this integral (difficult for complex shapes)

Buoyancy

- Archimedes' Principle (Greek mathematician/inventor, $3^{\text {rd }}$ century $B C$):

"A body immersed in a fluid experiences a buoyancy force equal to the weight of displaced fluid"
- W acts at the centre of mass of the solid
- F_{B} acts at the centroid of the displaced volume

So, $F_{N}=W-F_{B}=\gamma_{S} \forall_{S}-\gamma_{L} \forall_{S}$
 displaced by solid where \forall_{S} is the volume of the solid

Buoyancy

- For a floating object:
$W=F_{B}$
- It follows from Archimedes' Principle that:
"A floating body displaces its own weight of the fluid in which it floats"
- W acts at the centre of mass of the solid
- F_{B} acts at the centroid of the displaced volume

$$
W=F_{B} \quad \gamma_{S} \forall_{S}=\gamma_{L} \forall_{\text {displaced }}
$$

To float: $\gamma_{S} \leq \gamma_{L}$

Buoyancy

- We can show Archimedes' principle using simple hydrostatic analysis:
- Consider a cube with side length L, fully immersed a in liquid, γ_{L}

Buoyancy

Noting that $A=L^{2}$, the net upward pressure force on the cube is:

$$
F_{B}=F_{B o t}-F_{T o p}=\gamma_{L}(h+L) L^{2}-\gamma_{L} h L^{2}=\gamma_{L} L^{3} \quad \text { Same as Archimedes' principle! }
$$

- Key Concept: Buoyancy is caused by the surface pressure distribution

Example Problem (Midterm 2015)

A rectangular block of wood $\left(S G_{w}=0.65\right)$ floats on oil with 75 percent of its volume below the free surface i.e., 75% submerged.

What is the specific gravity the oil?

Example Problem

Solution

- What is the force balance for a floating object?
- Floating object: $F_{B}=\mathrm{W}$
- W acts at the centre of mass
- F_{B} acts at the centre of the displaced volume

Free Body Diagram

Example Problem

- Floating object: $\quad F_{B}=W$

- Block is 75% submerged: $\forall_{\text {displaced }}=0.75 \forall_{w}$
- Thus:

$$
0.75 \gamma_{o} \not \forall_{w}=\gamma_{w} \not \forall_{w}^{\prime}
$$

- Divide by the specific weight of water:

$$
0.75 \frac{\overbrace{\gamma_{o}}}{\gamma_{\text {water }}}=\frac{\overbrace{\gamma_{w}}^{\gamma_{\text {water }}}}{S G_{w}}
$$

$$
S G_{o}=\frac{S G_{w}}{0.75}=\frac{0.65}{0.75}=0.867
$$

Stability of Floating Objects

- Not covering the mathematical details of stability. Engineers need to be aware of this issue. Naval architecture
- Stability is critical for the safe design of boats, barges, SAE mini-Baja vehicle, etc.
- Numerous accidents involving fishing boats capsizing

October 2015 near Tofino, British Columbia. Photo credit: Globe \& Mail

Photo credit: Ryerson Baja

Stability of Floating Objects

Consider this floating object tipped at small angle θ from vertical:

- F_{B} will act at the centroid of the red area
- Clockwise restoring moment will act to reduce θ
- "Meta-centre" M is above CG
- This design will tend to be stable

Stability of Floating Objects

- The previous floating object was wide and short
- Now consider a narrow/tall floating object tipped at small angle θ from vertical:
- "Meta-centre" M is below CG
- A counter clockwise moment will act to increase θ, i.e. to overturn
- This design will tend to be unstable
- Thus, a pencil will not float on water in an upright position -- unless you add
 a weight to the bottom to lower the CG
- Max. occupancy on the top deck of small fishing boats

Concept Question

- Does buoyancy affect the reading on your bathroom scale or is this effect negligible?

Answer:

- If you could weigh yourself in a vacuum, you
 would weight a bit more
- Volume of a typical human body is ~ 60 liters. Displaces about $0.06 \mathrm{~m}^{3}$ of air. Density of air is $\sim 1.2 \mathrm{~kg} / \mathrm{m}^{3}$. So, the upward buoyancy force is $\sim 0.07 \mathrm{~kg}$ or ~ 0.16 pounds. Small (~0.1\%)...but not zero
- We often neglect this effect. But keep this approximation in mind, e.g. using a scale to get the mass of a piece of polystyrene \rightarrow weight needs to be corrected

Example Problem

A long uniform wood rod is connected to a hinge and floats with half of its length in an unknown liquid, as shown in the sketch. The specific gravity of the wood is $S G_{w}=0.60$. Calculate the specific gravity of the liquid.

[^0]

Hydrostatic pressure distribution on ball

END NOTES

Presentation by Dr. David Naylor
Department of Mechanical and Industrial Engineering Ryerson University, Toronto, Ontario
Canada

Ryerson University

© David Naylor 2020. Please do not share these notes.

[^0]: Watch the Video Solution

