## MEC516/BME516:

 Fluid Mechanics
## Chapter 2: Fluid Statics

## RYERSON

UNIVERSITY
Department of Mechanical
\& Industrial Engineering

## Hydrostatic Forces on Curved Surfaces

- Hydrostatic Forces on Curved Surfaces
- Theory (use of FBDs)
- Two solved examples
- Useful for the engineering design of:
- Liquid containment structures (e.g. storage tanks, dams and levees)
- Ships, submarine vehicles



## Hydrostatic Forces on Curved Surfaces

- Analysis is for liquids:
- Pressure increases linearly with depth
- Gauge pressure distribution for incompressible fluids: $p=\gamma h$
- Recall that pressure acts normal to
 bounding surface
- Goals of the analysis:

1. Calculate the resultant forces on the surface: $F_{H}, F_{V}$
2. Locate the line of action of each force


## Hydrostatic Forces on Curved Surfaces

- While possible, integrating the local pressure distribution would be laborious
- Use a Free Body Diagram approach:



## Hydrostatic Forces on Curved Surfaces

- Example: Consider the liquid above the curved gate (AB) in the diagram

Vertical Component: $\quad \sum F_{v e r t}=0$

$$
F_{v}=W_{1}+W_{2}=\gamma \forall_{1}+\gamma \forall_{2}
$$

- Vertical component of the pressure force is equal to weight of the fluid above the surface
- Note: FBD shows forces on the liquid
- The hydrostatic force of the liquid on the gate $F_{V} \downarrow$


Free Body Diagram

## Hydrostatic Forces on Curved Surfaces

Horizontal Component: $\quad \sum F_{\text {horiz }}=0$

$$
F_{H}=F_{A C}=\gamma h_{C G} A_{A C}
$$

- Horizontal component of the pressure force equals the force on a projection of the curved surface into the vertical plane, AC
- $F_{H}$ acts at the centre of pressure of the vertical face (AC)

- Plane gate methods to calculate $F_{H}, y_{C P}$


## Example Problem (Midterm 2015)

Water ( $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ ) is contained behind a semi-circular gate, $A B$ with a radius of $R=2.0 \mathrm{~m}$. The gate is hinged at point $A$. Neglect the weight of the gate.

Calculate:
(a) The horizontal and vertical components of the hydrostatic force on gate (AB) per unit depth (into the page). Clearly indicate the directions of the forces.
(b) The horizontal force $\left(\mathrm{F}_{\mathrm{B}}\right)$ at point B needed to hold the gate in place (per unit depth)


## Example Problem (Midterm 2015)

## Solution

(a) I recommend drawing the hydrostatic pressure distribution on the gate

- The direction of the forces on the gate:



## Example Problem (Midterm 2015)

(a) Free body diagram of the water adjacent to the gate


- These are the forces on the water (opposite of forces on gate)
- Static equilibrium in vertical direction

$$
\begin{gathered}
\sum F_{v e r t}=0 \quad F_{V}=W=\gamma \forall \\
F_{V}=\gamma \forall=\frac{\gamma\left(\pi R^{2}\right) d}{2}
\end{gathered}
$$



## Example Problem (Midterm 2015)

$$
F_{V}=\gamma \forall=\frac{\gamma\left(\pi R^{2}\right) d}{2}
$$



Thus, the vertical force on the gate is:

$$
F_{V}=\frac{9790 \frac{N}{m^{3}}\left(\pi(2 m)^{2}\right) 1 \mathrm{~m}}{2}=61.51 \mathrm{kN} \downarrow
$$

- $F_{V}$ acts in line with the weight at distance:

$$
\frac{4 R}{3 \pi}=\frac{4(2.0 \mathrm{~m})}{3 \pi}=0.8488 \mathrm{~m}
$$



## Example Problem (Midterm 2015)

- Static equilibrium in horizontal direction

$$
\sum F_{\text {horiz }}=0 \quad F_{H}=F_{A B}
$$

- Thus, $F_{H}$ is equal to the force on vertical plane surface $A B$

$$
\begin{gathered}
F_{H}=F_{A B}=\gamma h_{C G} A_{A B} \\
F_{H}=9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}(2.0 \mathrm{~m}) 4.0 \mathrm{~m}^{2} \\
F_{H}=78.32 \mathrm{kN} \leftarrow
\end{gathered}
$$

## Example Problem (Midterm 2015)

- Force $F_{H}$ acts in line with $F_{A B}$
- $F_{A B}$ acts below the centroid of surface AB :

$$
\begin{gathered}
y_{C P}=-\frac{I_{x x} \sin \theta}{h_{C G} A_{A B}} \\
I_{x x}=\frac{d(2 R)^{3}}{12}=\frac{1 m(4 m)^{3}}{12}=5.333 \mathrm{~m}^{4} \\
y_{C P}=-\frac{5.333 \mathrm{~m}^{4} \sin \left(90^{\circ}\right)}{2.0 m\left(4.0 \mathrm{~m}^{2}\right)}=-0.6667 \mathrm{~m}
\end{gathered}
$$



## Example Problem (Midterm 2015)

(b) Force $\left(F_{B}\right)$ at point $B$ needed to hold the gate in place

- Free body diagram for the gate

$$
\begin{aligned}
& \sum M_{A}=0+ \\
& F_{B}(2 R)-F_{H}(1.333 \mathrm{~m})-F_{V}(0.8488 \mathrm{~m})=0 \\
& F_{B}=\frac{78.32 \mathrm{kN}(1.333 \mathrm{~m})+61.51 \mathrm{kN}(0.8488 \mathrm{~m})}{4.0 \mathrm{~m}} \\
& F_{B}=39.2 \mathrm{kN} \rightarrow \quad \text { Ans. }
\end{aligned}
$$



## Example Problem

A liquid with specific weight $(\gamma)$ is contained in a tank shown in the sketch. The tank has unit depth (into the page).
(a) Draw the hydrostatic pressure distribution on curved surface $A-B$

(b) Derive expressions for the vertical and horizontal hydrostatic forces on curved surface A-B. Clearly indicate the directions of the forces

## Example Problem

## Solution

(a) hydrostatic pressure distribution on surface A-B


Sketch must have:

- $p_{A}>p_{B}$
- Arrow must be perpendicular to $A B$
- Directions of the hydrostatic forces on gate $A B$ :



## Example Problem

(b) Expressions for the vertical and horizontal hydrostatic forces

- Free body diagram of the forces on the water (under the gate)



## Example Problem

- Static equilibrium: $\sum F_{\text {horiz }}=0$

$$
F_{H}=F_{B C}=\gamma h_{C G} A_{B C}
$$



- For surface $\mathrm{BC}: h_{C G}=h-\frac{R}{2}, A_{B C}=R(1)$
- Horizontal force on surface $A B$ is:

$$
F_{H}=\gamma\left(h-\frac{R}{2}\right) R \leftarrow
$$



## Example Problem

- Static equilibrium: $\sum F_{\text {vert }}=0$

$$
F_{V}=F_{A C}-W
$$

- For surface $\mathrm{AC}: F_{A C}=\gamma h R(1)$
- Weight of the water: $W=\gamma \forall=\gamma \frac{\pi R^{2}}{4}$ (1)
- Vertical Force on surface $A B$ is:

$$
F_{V}=\gamma h R-\gamma \frac{\pi R^{2}}{4} \uparrow
$$

## Pressure Distribution on a Curved Surface

Which sketch of the pressure distribution is correct?

Answer: Distribution 2


What is wrong with the others?


Pressure Distribution 3


Pressure Distribution 4

## Example Problem

The curved gate (AB) shown in the sketch has a radius of $R=6 \mathrm{~m}$.
(a) Calculate the total hydrostatic force on the curved gate AB per meter of depth (into the page)
(b) Find the line of action of the resultant force

Watch the Video Solution


Hydrostatic Forced on a Curved Gate Solved Example


## END NOTES

Presentation by Dr. David Naylor
Department of Mechanical and Industrial Engineering Ryerson University, Toronto, Ontario

## Canada

© David Naylor 2020. Please do not share these notes.

