MEC516/BME516: Fluid Mechanics I

Chapter 2: Fluid Statics

© David Naylor, 2020

RYERSON UNIVERSITY

Department of Mechanical & Industrial Engineering

- Plane surfaces, i.e. flat surfaces
- For the engineering design of:
 - liquid containment structures
 (e.g. storage tanks, dams and levees)
 - hulls of vessels
 - (e.g. ships, submarine vehicles)

www.freeimages.com

Application: Water Tanks

- Water tanks are place on the top of buildings to supply domestic water
- Steel support bands are unevenly spaced
- Why?

Ans: Hydrostatic force increases (linearly) with depth

Domestic water storage tanks in New York City

- Our analysis is for *liquids*:
 - Pressure distribution for incompressible fluids
 - $p p_{atm} = \gamma h$ (gauge)
 - Pressure increases linearly with depth
 - Recall that pressure acts <u>normal</u> to bounding surface
- Goals of our analysis:
 - 1. Integrate pressure distribution to get total resultant force (F) on surface
 - 2. Locate the line of action of force, F (*Centre of Pressure*)
- Needed for stress analysis, plate thickness etc.

PCS211

Problem Definition

- Flat surface at angle, θ
- Red outline is the gate
- CG: centre of <u>area</u> of gate

Analysis Objectives:

- Calculate the total force on the gate
- Find the location of the total force (Centre of pressure)

Oblique View of Gate Problem

Problem Definition

- Flat surface at angle, θ
- Red outline is plan (top) view
- CG, centre of *area* of gate
- Coordinate ξ measured from free surface, parallel to gate

Differential force:

$$dF = p \, dA = (p_a + \gamma \, h) \, dA$$

Integrate over gate area:

$$F = \int_{A} dF = \int_{A} (p_a + \gamma h(x, y)) dA$$

Resultant Force

$$F = (p_a + \gamma h_{CG}) A = p_{CG} A$$

• Thus, p_{CG} is the average pressure on the gate

What is the line of action of F?

- IMPORTANT! F does not act at CG
 - F acts below centroid, at CP
 - To be explained...

Centroid locations, $I_{xx} & I_{xy}$ given in textbook

Second Moment of Area, I_{xx}

- A geometric property, analogous to moment of inertia (in physics, second moment of mass)
- 2nd moment of area about the x-axis is defined as:

$$I_{xx} = \int_A y^2 dA$$
 (units of m⁴)

- This integral has been evaluated for common shapes
- See Figure 2.13 in textbook

Recall Beam bending stress? BME/MEC323: $\frac{M}{I} = \frac{\sigma}{y}$

Figure 2.13: Centroids and Second Moments of Area

Gauge Pressure Formulas

- In many cases p_a acts on both sides of the gate, cancels out
- Force *F* is only caused by weight of fluid

Simplified equations:

$$F = \gamma h_{CG} A$$
$$y_{CP} = \frac{-I_{xx} \sin \theta}{h_{CG} A}$$

passing through the gate's centroid

Example Problem

Consider a reservoir of water at 20°C. A vertical hinged gate (AB) holds back the water. The gate has a depth of 3.0 m (into the page).

- (a) Sketch the hydrostatic pressure distribution on the gate (AB)
- (b) Calculate the total force (F) on gate AB
- (c) Find the distance of the line of action of force (F) from the hinge at point A

Why is the C of P below the Centroid?

- Consider the pressure force on a gate in a chamber of gas
- Uniform pressure distribution (Why?)

Density of gases O(10³) less dense liquids. Variation of pressure with height is negligible

- C of P is at the centroid
- With F located at the centroid, both systems have the same moment about the CG

Why is the C of P below the Centroid?

- Non-uniform pressure distribution (hydrostatics)
- Pressure at the centroid is the average pressure on gate

Pressure Distribution

Equivalent Force *Below* Centroid

- To have the same moment about CG, F must act below the centroid (by amount, y_{CP})
- Like a ramped
 distributed load (statics)

Example Problem

Watch the Video Solution

Example: Hydrostatic Force on a Plane Gate

A semi-circular gate is held closed by force F_g applied 0.6 m from the top edge. The gate is hinged along the upper straight edge. Calculate the minimum force F_g necessary to keep the gate closed against the hydrostatic force of the water.

Neglect the mass of the gate

END NOTES

Presentation by Dr. David Naylor Department of Mechanical and Industrial Engineering Ryerson University, Toronto, Ontario Canada

14.59 kg?

© David Naylor 2020. Please do not share these notes.

Ryerson University

