MEC516/BME516: Fluid Mechanics I

Chapter 1: Introduction

© David Naylor, 2020

RYERSON UNIVERSITY

Department of Mechanical & Industrial Engineering

Overview

- Velocity Vector Field
 - The No-slip Condition
- Fluid Properties:
 - Density: p Specific gravity: SG
 - Specific weight: $\boldsymbol{\gamma}$
 - Viscosity: μ, ν

- Newton's Law of Viscosity
 - Non-Newtonian fluids
- Laminar and Turbulent Flow
 - The Reynolds number

Velocity Field

• Fluid velocity is a vector field

• The velocity vector is a function of position (*x*,*y*,*z*) and time (*t*):

$$V = \mathbf{i} u(x, y, z, t) + \mathbf{j} v(x, y, z, t) + \mathbf{k} w(x, y, z, t)$$

where *u*, *v* and *w* are the velocities in the x, y, and z directions

• If V depends on time (t), the flow is said to be *transient* or *unsteady*

No-slip Condition

- One of the most important concepts in fluid mechanics!
- At a solid surface, fluid "sticks" to the surface
- Experimentally observed fact: Fluid has the same velocity as a solid surface
- If the surface is stationary: u=0 at y=0
- Thus, at a solid stationary surface:

$$u = v = 0$$
 (for a solid impermeable surface)
no slip Impermeability

No-slip Condition

• The no-slip condition provides the *boundary condition* for mathematical solutions of fluid flow (Chapter 4)

No-slip Condition

- Every day consequences of the no-slip condition:
- Difficult to getting the last of the ketchup out of the bottle

 Your car is still dirty after driving fast. Dust particles are in a low velocity region due to no-slip

https://www.youtube.com/watch?v=cUTkqZeiMow

<u>Density</u>, ρ

- Mass per unit volume: units *kg/m³*, *slugs/ft³*
- Liquids can be considered *incompressible* for most engineering applications
 - Liquid density is independent of pressure: $\rho \neq f(p)$
 - Liquid density is a weak function of temperature (due to thermal expansion)

Table A.1	Der	nsity	of l	iquid water	^
as a funct	ion	of te	emp	erature.	
	T	°C		Ira/m ³	

1, C	p, kg/m		
0	1000		
10	1000		
20	998		
30	996		
40	992		
50	988		
60	983		
70	978		
80	972		
90	965		
100	958		

 Density of gases at high temperatures and low pressures (T>> T_{critical} and P<<P_{critical}) can be calculated using the ideal gas equation:

$$ho = rac{p}{RT}$$
 where R is the gas constant
For air: R=287 J/kgK

• For example, the density of air at room conditions ($p = 100 \ kPa$ and 20°C) is:

$$\rho = \frac{p}{RT} = \frac{100x10^3 N/m^2}{287 \frac{Nm}{kgK}(20 + 273)K} = 1.19 \frac{kg}{m^3}$$
 Check that units balance!
R for other gases in Table A.4 Be sure to use absolute temperature

Specific Gravity, SG

• Ratio of the density to the density of water (at 4°C)

$$SG_{liquid} = \frac{\rho_{liquid}}{\rho_{water}} = \frac{\rho_{liquid}}{1000 \, kg/m^3}$$

- SG is dimensionless, no units
- *SG* indicates if substance will sink or float on water. If SG is less than 1.0, it will float, e.g. most oils

Olive oil on water

<u>Specific Weight</u>, γ

• Weight per unit volume; units N/m³, lb/ft³

$$\gamma = \rho g$$

4

e.g. Liquid water at 20 °C:
$$\rho = 998 \frac{kg}{m^3} = 1.937 \frac{slug}{ft^3}$$

$$\gamma_{water} = 998 \, \frac{kg}{m^3} \left(9.81 \frac{m}{s^2}\right) = 9790 \, N/m^3$$
$$\gamma_{water} = 1.937 \, \frac{slug}{ft^3} \left(32.17 \frac{ft}{s^2}\right) = 62.3 \, lb/ft^3$$

• We will use these values to calculate hydrostatic forces in Chapter 2

Dynamic Viscosity^{*}, μ (Greek lower case mu)

- Units, kg/(m s) or slug/(ft s)
- Viscosity is the fluid's resistance to flow, i.e. the resistance to applied shear stress
 - High viscosity fluids, e.g., honey, engine oil
 - Low viscosity fluids, e.g. water, air

Kinematic Viscosity, v (Greek lower case nu)

• Units, m²/s or ft²/s

 $v = \frac{\mu}{\rho}$

www.freeimages.com

*Note: Some textbooks call μ absolute viscosity

<u>Viscosity</u>

- For most fluids, the shear stress (τ) is linearly proportional to the rate of shear strain of the fluid element
- Shear strain rate is equal to the local velocity gradient:

• Dynamic viscosity (μ) is the constant of proportionality

• Sometimes called "Newton's Law of Viscosity"

Viscosity of selected fluids at 20 °C

Fluid	$\mu, \mathbf{kg}/(\mathbf{m} \cdot \mathbf{s})^{\dagger}$
Hydrogen	9.0 E-6
Air	1.8 E–5
Gasoline	2.9 E-4
Water	1.0 E-3
Ethyl alcohol	1.2 E-3
Mercury	1.5 E–3
SAE 30 oil	0.29
Glycerin	1.5

Dynamic Viscosity, µ

- For common fluids (air water, oils) viscosity is a constant; independent of shear rate
- Viscosity (μ) is the slope
- Such fluids are called *Newtonian fluids*
- In this course, we will assume that fluids are *Newtonian*

Dynamic Viscosity, µ

- Very weak function of pressure
- Viscosity is a function of temperature:
 - viscosity of liquids *decrease* as temperature increases
 - viscosity of gases *increase* as temperature increases

Figure A2: Absolute viscosity at 1 atm.

Measurement of Dynamic Viscosity (µ)

- Commercial instruments (~\$5000) measure the torque required to turn a spindle at a known speed
- Rotary viscometer
- Measures in "Centipoise" (cP) $1 \text{ cP} = 10^{-3} \text{ kg/(m s)}$

(After Jean Poiseuille, studied blood flow in 1800s)

Bigger spindles are for less viscous fluids

Example: The Viscous Shear Force

A plate in a machine is lubricated by a film of SAE50W oil at 20 °C with thickness t=1.5 mm. The plate has length L=30 mm and depth w=130 mm (into the page). Calculate the shear force (F) required to slide the plate at a velocity of V=2.1 m/s.

Direction of the fluid shear stress <u>on the plate</u>?

Fluid viscosity opposes motion, acts like fluid "friction"

Solution

Plate depth (into page) w=130 mm

$$A = Lw = 0.030m(0.130m) = 3.9x10^{-3}m^2$$

• Force (F) balances the fluid shear force ($\sum F = 0$):

$$F = \tau A$$

$$F = 1204 \ \frac{N}{m^2} (3.9x10^{-3}m^2) = 4.70 \ N$$
 Ans.

Non-Newtonian Fluids

 Some fluids, viscosity depends on shear rate and/or time

More complex models are required

- Viscosity is not constant
- Such fluids are called non-Newtonian fluids
- Examples:
- Blood is shear thinning

Non-Newtonian Fluids

 $\frac{du}{dy}$ $\tau \neq \mu$

- Examples:
- *Ketchup is thixotropic* (viscosity decreases with time)
- Egg whites are rheopectic

• Study of these unusual fluids is called Rheology (beyond current scope)

Corn Starch and Water

- A Non-Newtonian fluid
 - Recommend trying this a home

Corn Starch and Water Demo

Corn Starch and Water

- What does the shear stress-velocity gradient curve look like?
- What type of non-Newtonian fluid is corn starch and water?
- Viscosity increases with shear rate: *Dilatant*

Laminar & Turbulent Flows

- In turbulent flow, fluid "particles" move in irregular paths
- The velocity at a fixed point varies randomly (Turbulent flow is a *stochastic process*; requiring statistical analysis)
- Enhances convective heat transfer, good mixing
- Turbulent flows are most common
- While there are some good engineering models, turbulence remains an unsolved problem in modern physics

Video: Turbulent Jet Flow

Laminar & Turbulent Flows

- In *laminar flow* the fluid "particles" move along smooth paths (from *laminae*, meaning thin layers)
- Velocity at a point is constant in steady flow
- Laminar flow occurs a low fluid velocities, over small objects or in highly viscous fluids
- Fluid viscosity dampens out the eddies (vortices) associated with turbulent flow

Video: Laminar flow over an inclined airfoil

Transition from Laminar to Turbulent Flow

 The character of a flow, laminar or turbulent, depends mainly upon a dimensionless parameter called the *Reynolds number (Re):*

 $Re = \frac{\rho VD}{\mu}$ (e.g. Re<2300 laminar pipe flow)

- ρ fluid density
- μ fluid viscosity
- V fluid velocity
- D pipe diameter
- You will learn more about the Reynolds number, later in this course and in Lab 2
- We will show this famous result in Chapter 5

Osborne Reynolds (1842-1912) Irish a pioneer in fluid dynamics

Example: Dimensional Consistency

- The dynamic viscosity (μ) of an oil is calculated by measuring the terminal velocity (V) of small spheres falling under the action of gravity (g)
- For very slow flow ("Stokes Flow"):

$$\mu = \frac{D^2 g \left(\rho_{sphere} - \rho_{oil}\right)}{18 V}$$

Confirm the dimensional consistency of this equation

Streamlines for Laminar Flow Over a Sphere

Example: Viscous Shear Stress in a Boundary Layer

When a fluid flows over a surface, the velocity is reduced near the surface due to the action of viscosity. The velocity profile is approximately:

$$u = \frac{3 U_{\infty} y}{2 \delta} - \frac{U_{\infty}}{2} \left(\frac{y}{\delta}\right)^3 \qquad 0 \le y \le \delta$$
$$u = U_{\infty} \qquad \qquad y > \delta$$

- U_{∞} is called the freestream velocity, the uniform velocity far from the surface
- δ is called the boundary layer thickness

Calculate:

- (a) The fluid shear stress on the surface. In what direction does it act?
- (b) The fluid shear stress at edge of the boundary layer, $y = \delta$.
- (c) For 20°C air flowing at $U_{\infty} = 11 \text{ m/s}$, calculate the total shear force on a surface with area (one side) A=15 m². Assume the boundary layer thickness is δ =5.0 mm and constant over the entire surface.

Watch the Video Solution

Shear Force on Surface $F = \tau A$

© David Naylor 2020