MEC516/BME516: Fluid Mechanics I

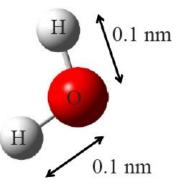
Chapter 1: Introduction

© David Naylor, 2020

RYERSON UNIVERSITY

Department of Mechanical & Industrial Engineering

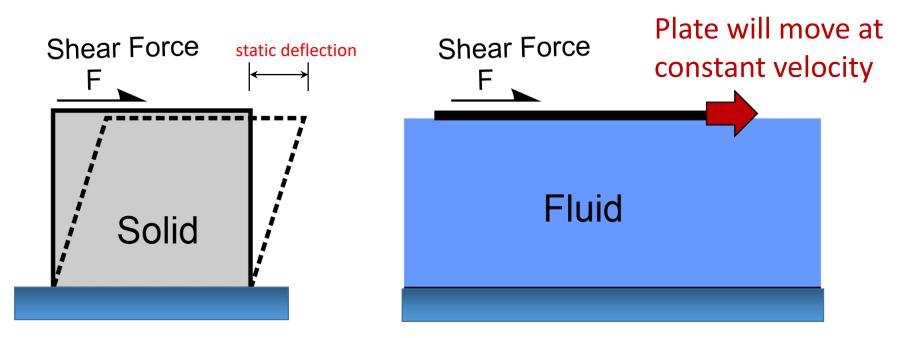
Overview


- Basic Definitions:
 - Definition of a fluid
 - Temperature and pressure
- The Continuum Approximation
- Dimensions, Units & Dimensional Homogeneity

Shear Force

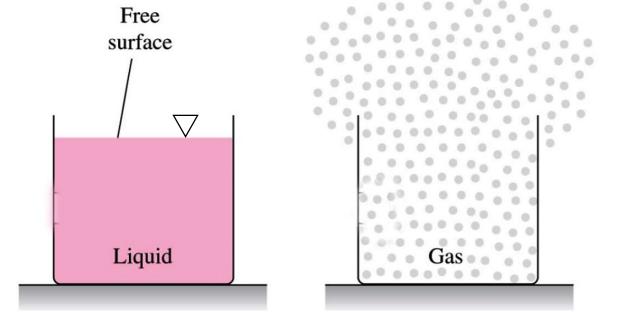
Fluid

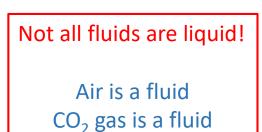
F


$J \equiv \frac{kg m}{s^2} m = \frac{kg m^2}{s^2} \qquad \left\{ \frac{M L^2}{T^2} \right\}$

Fluid Mechanics is the study of fluids at rest (*fluid statics*) and in motion (*fluid dynamics*)

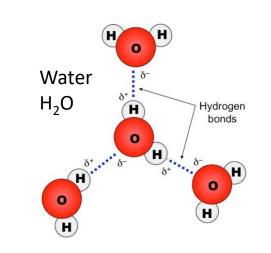
• What is a fluid? (How does a fluid differ from a solid?)


- Unlike a solid: A fluid cannot resist shear stress
- A fluid will deform continuously for any applied shear force, no matter how small


There are two main classes of fluids: Gases and Liquids

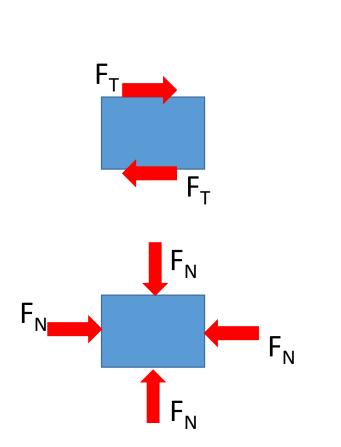
- Gases expand to fill their container molecules are widely spaced
- Liquids retain their volume and form a free surface molecules are more closely spaced

Glass contains two fluids: water and air



Water vapor is a fluid

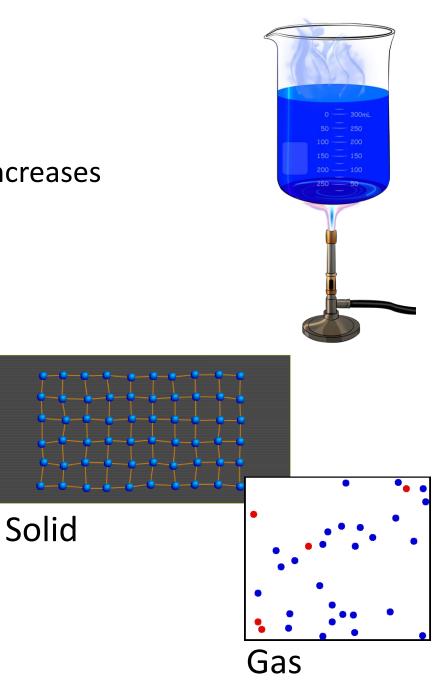
 Closely space molecules in liquids have strong cohesive forces → free droplets tend to form spheres due to *surface tension*



www.freeimages.com

• Most liquids are about O(10³) times more dense than gases at ambient conditions:

Concept of a Fluid


- We know: Fluids cannot resist shear stress
- Can a fluid resist normal stress? (a) Yes, but only liquids (b) Yes, but only gases Ans. (c) Yes, both liquids and gases (d) No. Fluids cannot resist normal stress
 - Normal stress in a static fluid is called *pressure*

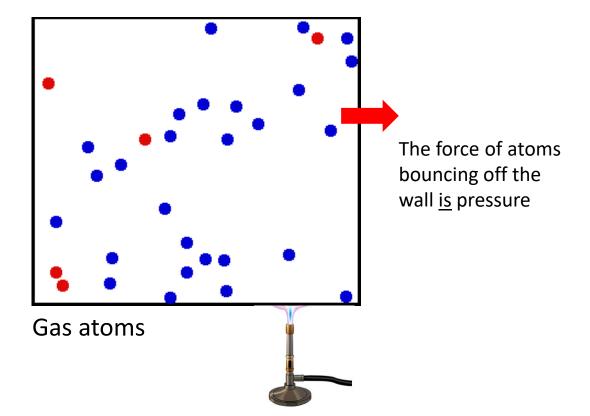
Temperature and Pressure

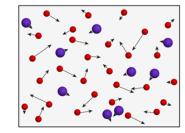
- If we add heat (or work) to substance, temperature increases
- But fundamentally, what is going on?
 What is "temperature"?
- Temperature is a measure of kinetic energy of the atoms or molecules. "Jiggles"
- The "jiggling" becomes more energetic as temperature increases

Temperature and Pressure

- At the atomic/molecular scale, thermal energy is kinetic energy
- In thermodynamics we call this "internal energy" (U)
- Evidence of this atomic jiggling was first seen in 1827!

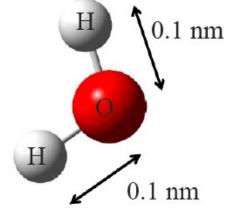
"Brownian motion" of small particles, caused by random molecular motion. Add heat and the "jiggling" will get faster.

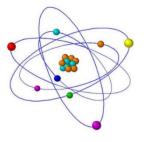



Temperature & Pressure

- Fundamentally, what is pressure? ("Force per unit area" provides no physical insight)
- When atoms bounce off the wall, they impart a force on the walls
- The change in momentum (m $\Delta \vec{v}$) <u>causes</u> the pressure force
- Put these two concepts together:

Why does pressure increase if you heat a sealed container?

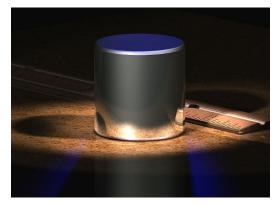

The Continuum Approximation


- Fluid properties are assumed to vary continuously, e.g. point density, $\rho(x, y, z)$
- We assume that ρ(x, y, z) varies smoothly so we can use differential calculus
- volume $\rho = 1000 \text{ kg/m}^3$ $\rho = 1100$ $\delta \upsilon$ $\rho = 1200$ $\rho = 1300$

Elemental

Region containing fluid

- Assumption **not** valid near the molecular/atomic scale
- Variables at a "point" actually represent an average over a small volume ($\delta V \approx 10^{-9} \text{ mm}^3$)
- Excellent approximation for most engineering purposes (breaks down at small length scales, e.g. nano-engineering)

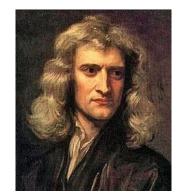


Dimensions and Units

In fluid mechanics we use four *Primary Dimensions*:
 { has dimensions

Mass {M} Length {L} Time {T} Temperature { Θ }

International Standard Kilogram (Bureau of Weights and Measures, Paris)


• A unit is way of attaching a number to the dimension, using an arbitrary measure

	international system	Billisii Glavitational Syster	11	
Primary dimension	SI unit	BG unit	Conversion factor	
Mass $\{M\}$	Kilogram (kg)	Slug (not pounds)	1 slug = 14.5939 kg	
Length $\{L\}$	Meter (m)	Foot (ft)	1 ft = 0.3048 m	2
Time $\{T\}$	Second (s)	Second (s)	1 s = 1 s	9.8 m/s ²
Temperature $\{\Theta\}$	Kelvin (K)	Rankine (°R)	$1 \mathrm{K} = 1.8^{\circ} \mathrm{R}$	32.2 ft/s ²
	K = °C +273	°R = °F + 460	W=Mg, M=W/g	

"International System" "British Gravitational System"

Secondary Dimensions

- The most important secondary dimension is Force {F}
- Using Newton's Second Law: $\mathbf{F} = \mathbf{ma} \rightarrow \{F\} = \{M \ L \ T^{-2}\}$
- International System (SI): $1 N = 1 kg (1 m/s^2)$
- British Gravitational System:
 1 lb = 1 slug (1 ft/s²)
- Important! "slug" is the unit of mass (not lb or lb_m) 1 slug= 14.59 kg
 - Conversion tables in Appendix C of textbook

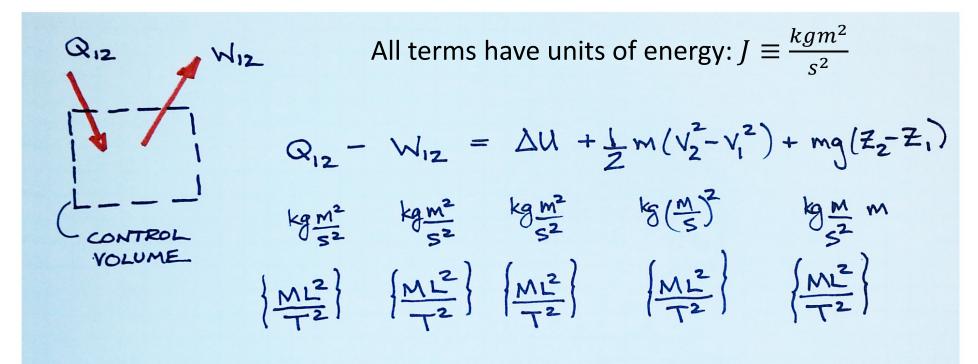
Secondary Dimensions

Table 1.2

SI unit	BG unit	Conversion factor
m ²	ft^2	$1 \text{ m}^2 = 10.764 \text{ ft}^2$
m ³	ft^3	$1 \text{ m}^3 = 35.315 \text{ ft}^3$
m/s	ft/s	1 ft/s = 0.3048 m/s
m/s^2	ft/s^2	$1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2$
$Pa = N/m^2$	lbf/ft ²	$1 \text{ lbf/ft}^2 = 47.88 \text{ Pa}$
s^{-1}	s^{-1}	$1 \text{ s}^{-1} = 1 \text{ s}^{-1}$
$J = N \cdot m$	ft · lbf	$1 \text{ ft} \cdot \text{lbf} = 1.3558 \text{ J}$
W = J/s	ft · lbf/s	$1 \text{ ft} \cdot \text{lbf/s} = 1.3558 \text{ W}$
kg/m ³	slugs/ft ³	$1 \text{ slug/ft}^3 = 515.4 \text{ kg/m}^3$
$kg/(m \cdot s)$	slugs/(ft \cdot s)	$1 \text{ slug/(ft} \cdot s) = 47.88 \text{ kg/(m} \cdot s)$
$m^2/(s^2 \cdot K)$	$ft^2/(s^2 \cdot {}^{\circ}R)$	$1 \text{ m}^2/(\text{s}^2 \cdot \text{K}) = 5.980 \text{ ft}^2/(\text{s}^2 \cdot \text{°R})$
	m^{2} m^{3} m/s m/s^{2} $Pa = N/m^{2}$ s^{-1} $J = N \cdot m$ $W = J/s$ kg/m^{3} $kg/(m \cdot s)$	$ \begin{array}{ll} m^2 & ft^2 \\ m^3 & ft^3 \\ m/s & ft/s \\ m/s^2 & ft/s^2 \\ Pa = N/m^2 & lbf/ft^2 \\ s^{-1} & s^{-1} \\ J = N \cdot m & ft \cdot lbf \\ W = J/s & ft \cdot lbf/s \\ kg/m^3 & slugs/ft^3 \\ kg/(m \cdot s) & slugs/(ft \cdot s) \\ \end{array} $

Why does energy have dimensions {ML²T⁻²}?

Secondary Dimensions

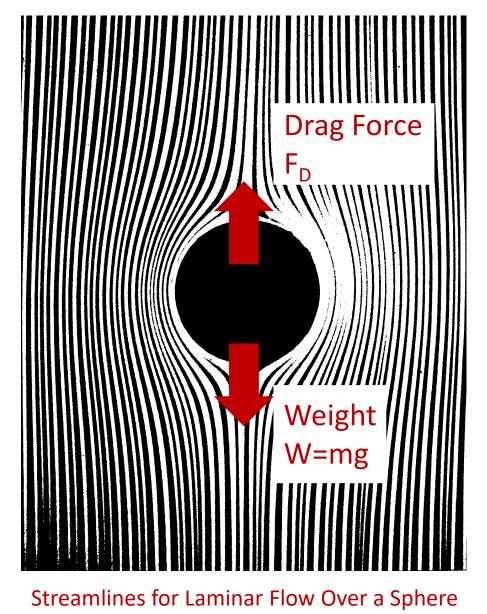

- Why does energy have dimensions {ML²T⁻²}?
- Energy has units of Joules $J \equiv N m$ • A Newton is defined by F = ma: $N \equiv \frac{kg m}{s^2}$

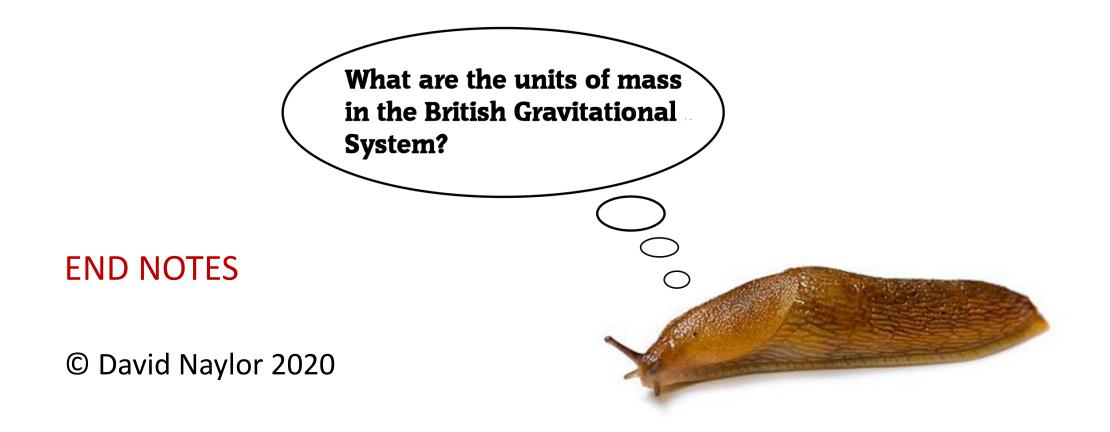
$$J \equiv \frac{kg m}{s^2} m \equiv \frac{kg m^2}{s^2}$$
 Dimensions: $\left\{ \frac{M L^2}{T^2} \right\}$

• Thus, energy/work/heat have dimensions {ML²T⁻²}

Dimensional Homogeneity

- All terms in equations must be homogeneous in both dimensions and units
- For example, the first law of thermodynamics for a closed system:


• Useful for detecting errors. Needed for Dimensional Analysis (Chapter 5)


Example: Dimensional Consistency

- The dynamic viscosity (μ) of an oil is calculated by measuring the terminal velocity (V) of small spheres falling under the action of gravity (g)
- For very slow flow ("Stokes Flow"):

$$\mu = \frac{D^2 g \left(\rho_{sphere} - \rho_{oil}\right)}{18 V}$$

Confirm the dimensional consistency of this equation

