MEC516/BME516: Fluid Mechanics I

Chapter 1: Introduction

Part 3:

Vapor Pressure \& Cavitation

RYERSON UNIVERSITY

Department of Mechanical
\& Industrial Engineering

Overview

- Fluid Properties Continued

Part 3:

- Vapor Pressure
- Cavitation

Vapor Pressure

- A liquid in an open container will evaporate
- Some molecules have enough momentum to overcome the intermolecular cohesion
- Evaporation rate increases as temperature increases \rightarrow more molecular kinetic energy

Vapor Pressure

- With a lid, the molecules will build up in the vapor until the number of molecules entering and leaving the liquid surface are EQUAL
- An equilibrium is reached. Mixture is saturated
- The pressure that builds up in the vapor is called the vapor pressure, p_{v}
- Vapor pressure increases with temperature

Vapor Pressure

- A liquid with a higher vapor pressure will evaporate at a higher rate
- A measure of volatility

Vapor Pressure at $20^{\circ} \mathrm{C}$:
Ethanol (Alcohol) $p_{v}=5.8 \mathrm{kPa}$
Water $\quad p_{v}=2.3 \mathrm{kPa}$
Ethylene Glycol $\quad p_{v}=0.60 \mathrm{kPa}$

Time-lapse video of an evaporating droplet

Vapor Pressure of Water with Temperature

Another way to look at it:
Table A. 5

- Vapor pressure is the pressure at which a liquid boils for a given temperature
e.g. At atmospheric pressure, $p=101.3 \mathrm{kPa}$ Water boils at $100^{\circ} \mathrm{C}$
$T,{ }^{\circ} \mathrm{C} \quad p_{v,}, \mathrm{kPa}$
- As pressure decreases, water boils at a lower temperature. Water can boil at $0^{\circ} \mathrm{C}$!

Effect of Pressure on the Boiling Temperature

- At the top of Mt. Everest ($8,848 \mathrm{~m} ; 29,029 \mathrm{ft}$) $p \approx 30 \mathrm{kPa}$, Water boils at $\sim 70^{\circ} \mathrm{C}$

Saturated Steam Table (Thermodynamics Textbook)

Vapor Pressure Demo: Boiling Water with an Ice Cube

Cavitation: A Consequence of Vapor Pressure

- In pipes, valves and rotating machinery the local pressure can drop below the vapor pressure of the liquid
- Causes local boiling, called cavitation

Marine propeller cavitation

Collapsing bubbles damages the propeller

Example

Liquid water flows through a gate valve at $50^{\circ} \mathrm{C}$. The valve is partly closed, causing the absolute pressure downstream of the valve to fall to 8 kPa .
Will cavitation occur under these conditions?

Table A.5: Vapor pressure of water

$T,{ }^{\circ} \mathrm{C}$	p_{v}, kPa
0	0.611
10	1.227
20	2.337
30	4.242
40	7.375
50	12.34
60	19.92
70	31.16
80	47.35
90	70.11
100	101.3

Yes. Boiling will occur at pressures lower than 12.3 kPa

Cavitation Damage to a Water Pump Impeller

Mechanic accidentally left this valve partly closed

Damaged pump impeller

The Leidenfrost Effect
END NOTES
Credit: https://youtu.be/M2CMH57hXmY
Presentation prepared and delivered by Dr. David Naylor
© David Naylor 2021. All rights reserved

