MEC516/BME516: Fluid Mechanics I

Chapter 1: Introduction

Part 3: Vapor Pressure & Cavitation

Department of Mechanical & Industrial Engineering

Overview

• Fluid Properties Continued

Part 3:

- Vapor Pressure
 - Cavitation

Vapor Pressure

- A liquid in an open container will evaporate
- Some molecules have enough momentum to overcome the intermolecular cohesion
- Evaporation rate increases as temperature increases → more molecular kinetic energy

Vapor Pressure

- With a lid, the molecules will build up in the vapor until the number of molecules entering and leaving the liquid surface are EQUAL
- An *equilibrium* is reached. Mixture is *saturated*
- The pressure that builds up in the vapor is called the vapor pressure, $p_{\rm v}$
- Vapor pressure increases with temperature

Vapor Pressure

- A liquid with a higher vapor pressure will evaporate at a higher rate
- A measure of *volatility*

Vapor Pressure at 20 °C:

Ethanol (Alcohol)	p_v = 5.8 kPa
Water	p_v = 2.3 kPa
Ethylene Glycol	p_v = 0.60 kPa

Time-lapse video of an evaporating droplet

Vapor Pressure of Water with Temperature

Another way to look at it:

- Vapor pressure is the pressure at which a liquid boils for a given temperature
- e.g. At atmospheric pressure, p=101.3 kPa Water boils at 100 °C
- As pressure decreases, water boils at a lower temperature. Water can boil at 0 °C!

Effect of Pressure on the Boiling Temperature

• At the top of Mt. Everest (8,848m; 29,029 ft)

p≈ 30kPa, Water boils at ~70 °C

Saturated Steam Table (Thermodynamics Textbook)

Same vapor	
pressure data	

/		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg		iemical.	
Temp. °C	Press. bar	Sat. Liquid $v_1 \times 10^3$	Sat. Vapor v _g	Sat. Liquid <i>u</i> f	Sat. Vapor u _g	Sat. Liquid h _f	Evap. $h_{\rm fg}$	Sat. Vapor h _g	
.01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	
4	0.00813	1.0001	157.232	16.77	2:		.9	8	
5	0.00872	1.0001	147.120	20.97	2:		8 M		
6	0.00935	1.0001	137.734	25.19	2:	/	22.		/
8	0.01072	1.0002	120.917	33.59	2:	(1	-Cr p	oint	
10	0.01228	1.0004	106.379	42.00	2:	///	\setminus		
11	0.01312	1.0004	99.857	46.20	2:	e / /	10 MPa	\checkmark	/
12	0.01402	1.0005	93.784	50.41	2: 2	×		\backslash	/
13	0.01497	1.0007	88.124	54.60	2:	₹///			/
14	0.01598	1.0008	82.848	58.79	2. adua	////	1 MPa	$ \times$	
15	0.01705	1.0009	77.926	62.99	2:	////			\setminus /
16	0.01818	1.0011	73.333	67.18	2:	// ///	0.1 M	Pa	\rightarrow
17	0.01938	1.0012	69.044	71.38	2: P		aturated lieu	uid line	
18	0.02064	1.0014	65.038	75.57	24	////	aturateu-liqt	Saturater	-vapor line
19	0.02198	1.0016	61.293	79.76	24	. ,,,,,		Saturated	
20	0.02339	1.0018	57.791	83.95	24			Volume	

Vapor Pressure Demo: Boiling Water with an Ice Cube

Cavitation: A Consequence of Vapor Pressure

- In pipes, valves and rotating machinery the <u>local</u> pressure can drop below the vapor pressure of the liquid
- Causes local boiling, called *cavitation*

Marine propeller cavitation

Collapsing bubbles damages the propeller

Example

Liquid water flows through a gate valve at 50 °C. The valve is partly closed, causing the absolute pressure downstream of the valve to fall to 8 kPa.

Will cavitation occur under these conditions?

Table A.5: Vapor pressure of water

<i>T</i> , °C	p_v , kPa
0	0.611
10	1.227
20	2.337
30	4.242
40	7.375
50	12.34
60	19.92
70	31.16
80	47.35
90	70.11
100	101.3

Yes. Boiling will occur at pressures lower than 12.3 kPa

Cavitation Damage to a Water Pump Impeller

Mechanic accidentally left this valve partly closed

Damaged pump impeller

The Leidenfrost Effect

END NOTES

Credit: https://youtu.be/M2CMH57hXmY

Presentation prepared and delivered by Dr. David Naylor

© David Naylor 2021. All rights reserved